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THE CHROMATIC NUMBER OF THE FUNCTION

The construction of the mathematical objects of the group structure on the set which is under the study
and the use of the properties of this structure is one of the effective methods of the study. The concept of
homomorphism is one of the basic concepts of group theory. This concept is very useful under the study of the
properties of the groups. Homomorphism is the mapping from one group to another which preserves the group
operation. An analogue of the concept of homomorphism in the case when an arbitrary everywhere defined

mapping f 1 X" — X is given instead of the group operation has been constructed by the authors. The case

when n=2 and X C R have been studied in details in the article. The concept of the chromatic number of
this mapping and the examples of its calculation have been given. The examples of the chromatic numbers of the
certain groups have been given with the necessary explanations. The concept of the chromatic number of the
real numerical function has been introduced. It has been shown that this concept is closely linked to the concept
of V.L. Rvachev R - function. It has been shown, using the known results, that the functions with the infinite
chromatic numbers exist. The examples of the chromatic numbers for the certain functions have been given with
the necessary explanations. The main result of this article is the proof of the fact that the linear function of two

real variables f(x,y) =oax+ fy+y,af #0 has no finite chromatic number. The similar result has been

proved for the function g(x,y) =x* - y2 of two real variables. Thus, the set R can not be colored into the

finite number of the colors in such a way that the color of the value of the function ox + Py + 7y, where

af # 0 is uniquely determined by the colors of its arguments. The same fact is true for the function x> - y2

and ax,x,...x, +b, where n>1, ab # 0. The obtained result can be formulated in terms of R - function as
follows:
the functions f(x,y) and g(x,y) (as well as the function ax,x,..X, +b under n>1,ab#0)

can not be R - function at any choice of the accompanying functions of multiple-valued logic.

Thus, the concepts of the chromatic class of the function and the chromatic number of the function have
been introduced in the given article. The relation between the obtained concepts and group theory has been
found. It has been demonstrated that the concept of the chromatic number of the function on the certain set is
closely linked to the concept of V.L. Rvachev R - function. It has been pointed out that the fact that the
chromatic numbers and the chromatic classes coincide for the isomorphic groups can be used under proving of
the nonisomorphy of the groups.

Keywords: chromatic number of the function, R - function, homomorphism.
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3armopoKCKUi HaIMOHAIEHBI YHUBEPCUTET
XPOMATHYECKOE YUCJIO ®YHKIUN

Tlocmpoenue Ha uccredyemom MHONCECmEe MAMEMAMUYECKUX 00beKmoe 2pynnosol Cmpykmypvl u
UCNONIb308AHUEe ee CBOUCME SBNAemCcs OOHUM U3 IPdexmusHbix Memodos uccredosanus. OOHUM U3
YEHMPATIbHLIX NOHAMUL Meopuu 2PYynn AGIAEmcs. NOHAMUE 20MOMOPPUIMA, KOMOPOe OKA3bLEACTC OYEHb
nonesnblM npu uzyuenuu ceoticme epynn. Lomomoppusm — smo omobpadicenue uz 00HOU 2pynnol 8 Opy2yio,
KOMOpoe CcOXpausiem 2pynnogyio onepaywio. B odamnoit cmamwee asmopamu nocmpoen ananoe NOHAMUL
20MOMOPPUIMA HA CAYUAT, KO20A 6MECMO 2PYRNOGOU ONEPaYUl 3A0AeMCs NPOU3BOIbHOE, 8CIO0Y ONPEOCICHHOE

omobpancenue [ : X" — X . B cmamve noopo6no paccmampusaemes cayuail, kozoa n=2 u X C R.

ﬂaemc;l onpedeﬂeHue xpomamudecKkoco 4ucia 3moco omo6pa0fceHu}1 u npueodﬂmc;z npumepbvlt €20 6bl4UCIEeHUAL.
Hpueeaenbl npumepsl XpomamudecKkux uucesl HeKomopwvix cpynn c HeobXo0uMbiMU nosichenusmu. Beedeno
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NOHSIMUEe XPOMAMUYECKO20 YUCLA BeUJeCMBEHHOU YUCA080U (DYHKYUU U NOKA3AHO, YMO MO NOHAMUE MECHO
ceszano ¢ nousmuem R - ¢pynxyuu B.JI. Peauesa. Onupasce na uszeecmuvle panee pe3yibmamol, NOKA3AHO,
umo Cyujecmeyiom uucioevie QYHKYuU ¢ OeCKOHEeUHbIMU XPOMAMUYeCKumMu yuciamu. B kauecmee npumepos
NpUBeOeHbl XPOMAMUYECKUe HUCIAd HEKOMOPbIX (YHKYUL, OaHbl NOSACHEHUs NOJYYEHHbIX pe3yibmamos.
OCHOBHBIM pe3yIbmamom Mol cmamovl S8IAemcss 00KA3AMeIbCmeo mo2o (Gaxkma, Ymo IuHeuHas QyHKyus
06yx Oeticmeumenvioix nepemennsix f (x, y) =ox+ fy+y,af #0 ne umeem xoneunozo xpomamuyecrkozo

2

. 2 .
yucia. Ananocuumvill  pe3yrbmam O00KA3aH OAs  YHKYuu g(x,y):x — Yy~ 08yx OelicmeumenbHblx

nepemennwix. Taxum obpasom, muoscecmso R menvss packpacume 6 xoweunoe uucio yeemos max, umobvi
yeem snauenus Gymcyuu QX+ Py +y, 20e aff #0 oonosnauno onpedenancs yeemom ee apaymenmos. To

2

ace Kacaemes Gynkyuii X°—y° u ax,x,..x, +b, 20e n>1,ab#0. B mepmunax R - ¢ynxyuii

NOMYUEHHbLI PE3YIbIMAM MOJMCHO CQOPMYAUPOBAMb CLEOVIOWUM 00PAZ0M:
dynxyuu f(x,y) u g(x,y) (kax u pynxyus ax,x,...x, +b npu n>1,ab #0) ne moeym 6vimo
R - ¢pynxyusmu nu npu xaxom evibope conpoeoicoarowux QyHKyuLi MHO203HAUHOU NOSUKU.

Takum obpazom, 6 OAHHOU CMAMbe 68e0eHbl NOHAMUS XPOMAMUUECKO20 KIACCA U XPOMAMULECKO20
yucaa gynuxyuu. Hatloena c6:a3b medncoy noayuenHbiMu noHsmuamu u meopuei epynn. Ilpodemoncmpuposano,

YMO NOHAMUE XPOMAMUUECKO20 YUCAA (DYHKYULU HA HEKOMOPOM MHONCECHGe MecHO Ces3ano ¢ nouamuem R -
@yuxyuu B.JI. Peauesa. Ommeueno, umo 01 00KA3AmMeabCmed Heu3oMop@OHOCMU SPYII MONHCHO UCNOIb308AMb
mom ¢paxm, 4mo Ons UBOMOPOHBIX SPYNN XpomamuyecKue Yucia U XpomMamuyeckue Kiaccol, K KOmopbiM OHU
OMHOCAMCS, COBNAOAION.

Kniouesvie crosa: xpomamuveckoe wucio gynxyuu, R - pynxyus, 2omomopgusm.

LT. BEJIMYKO
IIpara
€.B. CTETAHLIEB

3anopi3bkuii HAIlIOHATLHAN YHIBEPCUTET

XPOMATHUYHE YU CJIO ®YHKIIII

Ilobyoosa ma 00CHIONCYBAHIN  MHOJICUHI  MAMEMAMUYHUX —00'€Kmie  epynoeoi cmpykmypu i
suKopucmanus il eracmugocmet € OOHUM 3 eDEeKMUGHUX Memoodie Jocaiodcerns. OQOHuM 3 YEHMPATbHUX
NOHAMb  Meopii epyn € NOHAMMA 20MOMOPQIZMY, AKe BUABIAEMbCA OyxHce KOPUCHUM NPU  BUBHYEHHI
enacmusocmeti epyn. I'omomop@izm - ye 8i0odpadicenus 3 0OHiel epynu 6 iHuLy, siKe 30epieac epynogy onepayiio.
V' oanitt cmammi asmopamu nobdyoosanuii ananoe NOHAMMS 20MOMOPGIMY HA SUNAOOK, KOIU 3AMICHb

2pynoeoi onepayii 3adaemucs dosinvie, ycioou eusnauene sidodpaxcenns [ : X" — X .V emammi doxnaono
posansdaemvca eunadok, ko N=2 i X CR. Jaemvcs eusnauenms Xpomamuunozo uuUcia uybozo

81000padicents I HaBOOAMbCA NPUKIAOU 11020 0byucenns. Hagedeni npukiadu XpoMamudHux 4ucen 0eskux epyn
3 HeOOXIOHUMU NOSICHEHHAMU. Beedeno nousmms Xpomamuuno2o 4ucia OiticHoi yucnosoi ¢yuxkyii i nokazamo,

wo ye nouamms micno nos'sizane 3 nonwsmmam R - @yuxyii BJI. Peauesa. Chuparouuce Ha 6i0oMi pauiuie
pesyavmamu, NOKA3AHO, WO ICHYIOMb YUCNO08I (QYHKYII 3 HeCKIHYeHHUMU XpoMamuuyHumu uquciamu. [[is
NPUKAAOY HABEOEHO XPOMAMUYHI YUCIA 0eaKUX QYHKYIl, Oani NOACHEHHs OMpUMaHux pezyibmamis. OCHOGHUM
pesyriomamom yici cmammi € 008e0eHHs MOo20 (akmy, wo AHIUHA QYHKYIA 080X OIUCHUX 3MIHHUX

f (x, y) =ax+py+y,aff #0  ne mac cxinuenozo xpomamuunozo uucia. Amanoziunuii pesyrbmam
dosedenuil 0ns pyukyii g(x,y): x —y2 060x Oiticnux sminnux. Taxum uunom, muoxcuny R mnemoocna
posapbyeamu 6 cinuene wucio koabopie max, wob xonip smavenns gymxyii ox + fy+y, oe aff #0
00HO3HAYHO BU3HAYABCS KOIbOPOM iT apeymenmis. Te oc cmocyembes Qynkyitl X — y2 I axx,..x, +b, oe
n>1,ab#0. Y mepminax R - pynxyiii ompumanuii pesynomam modcna cpopmynioeamu HACMYRHUM YUHOM.

pynryii f(x,y) i g(x,y) (ax i pynxyin ax,\x,...x, +b npu n>1,ab #0) ne moxcyms Gymu

R - ¢ynryiamu ni npu sxomy eubopi cynposooscyouux gyuxyiii 6azamosnaunoi noziku. Takum 4uHom, 6 OaHii
cmammi 66€0€eHO NOHAMMSL XPOMAMUYHO2O KIACY [ XPOMAMUYHO20 YUCia (QyHKyii. 3naiioeno 38’130k Midc
OMPUMAHUMY NOHAMMAMU [ meopieto epyn. [IpodemMoHcmposano, wo NOHAMMA XPOMAMUYHO20 YUCLA QYHKYIT

Ha Oeskiti MHodcuni micno nos'azane 3 nowsmmam R - yynxyii B.JI. Peauesa. Biosnaueno, wo ons doéedentsn
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Hei30MOPPHOCMI 2PYN MOJICHA BUKOPUCTNOBY8amuU MO (axm, wo 05 i30MOPOHUX 2PYN XPOMAMUYHI Yucia i
XPOMAMUUHI KAACU, OO SAKUX GOHU HANEHCAMb, 3012Al0MbCAL.

Knrouosi cnosa: xpomamuune yucno gpyuxyii, R - @ynxyis, comomopizm.

The formulation of the problem
The concept of homomorphism, which is very useful for the studying of the properties
of the groups [2], is one of the basic concepts of group theory. The homomorphism is the
group operation which preserves the mapping from one group into the other group. An
analogue of the concept of the homomorphism in the case when the arbitrary completely
defined mapping f: X" — X 1is given instead of the group operation has been proposed by

the authors. The case n=2 and X < R has been studied thoroughly. The definition of the
chromatic number [1] of this mapping and the examples of its evaluation have been given.

The analysis of the recent research and publications
The concept of V.L. Rvachev R - function has been described in [3, 4]. The fact that

the function f (x, y) =xy—1 cannot be R - function has been proved in the article [5].

The aim of the study
The aim of this article is to prove that the linear function of two real variables
f(x,y)=ax+ By +y,af #0 and the function g(x,y)=x>—y* of two real variables have no
finite chromatic number.

The presentation of the main material

Let G - be some group. If there exists such finite group 7', which contains £ >1
elements, and f:G — T - surjective homomorphism, then let us say that the group G
belongs to the chromatic & - class. The minimal nontrivial group, for which it is possible to
construct such homomorphism, is of grate interest. Let us call the minimal number of the
chromatic class, to which the given group belongs, the chromatic number of the group G .
This name comes from the fact that the elements of the group G are considered to be pained
in several colors in such a way that complete inverse image of each element consists of the
elements which are alike in color. The homomorphism is given f:G —> T .

In other words, the group belongs to the chromatic £ - class if it has the normal divisor

of index k, and the chromatic number of the group is the minimal index of the nontrivial
normal subgroup. Let us consider the examples.

1. The chromatic number of the group S, is equal to 2, because it contains the normal
divisor A4, of the index 2. Indeed, if one paints all even substitutions in one color, and the odd
substitutions in the other color, then the color of the product of the substitutions can be
determined uniquely.

2. The chromatic number of the cyclic group of order p“ is equal to p, where p is
the prime number.

3. Group (Z ,+) can be mapped onto the group (Zn,+) for all » € N naturally, that is

this group belongs to the chromatic »n - class for all ne N\ {1}, and its chromatic number is
equal to 2.

It is obviously that, the chromatic numbers of the isomorphic groups and the chromatic
classes, to which they belong, are the same. One can use this fact to prove the nonisomorphy
of the groups.

Let us turn to the generalization of the concepts of the chromatic class and the
chromatic number of the group in the case of the arbitrary set. Let the mapping from the
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Cartesian power of the set into this set is given. In this article we restrict ourselves to the case
of the mapping with two arguments and X c R.

Let us consider the arbitrary function f (x, y) over the Cartesian square of some
number set X . The range of the function belongs to the set X . The value of the function
f (x, y) is considered to be an analog of the result of the group operation on the elements
x,y. It stands to reason that it is not necessary to require the associativity of the operation
xky=f (x, y), the existence of the neutral and inverse elements [2].

If such coloring of the set X in the finite number of the colors k > 2, that the color of
the value of the function f (x, y) is determined uniquely by the colors of the values of the
arguments x and y exists, then we say that this function belongs to the chromatic k£ - class.
The minimal number of the chromatic class, to which this function belongs, we call the
chromatic number of the function f (x, y) on the set X and designate H ( f (x, y),X ) If the
function does not have the finite chromatic number, then we say that it is equal to infinity.

Obviously, if the range of the function f (x, y) is inconsistent with X', and it is the
proper subset of X, then H ( f (x, y),X ) =2. In order to prove this fact we paint the numbers,
which belong to the range of the function f (x, y), in one color, and the numbers, which do
not belong to the range of this function, in the other color. For example
H(azx2 +b*y* + c,R): 2, HQf(x,y)| + c,R): 2. In these examples a,b,ceR, f(x,y) is
arbitrary function on the number plane.

If the set X is the finite one, and if we paint each element in the separate color, then
we obtain H(f(x,y),X)£|X|.

The concept of the chromatic number of the function on some set is closely linked to
the concept of V.L. Rvachev R - function [3, 4]. The fact that the function f (x, y): xy—1
can not be R - function, which was proved in the article [5] before, can be reformulated in the
following way: there exist the numerical functions with the infinite chromatic numbers.
Among the other things, H (xy - I,R) =0,

Let us give the trivial examples. We consider the sets R or Z as the set X .

1. The function f](x, y)= x+y,on the set ZxZ, belongs to all chromatic classes. In
order to demonstrate it, we locate the natural number k£ >2 and paint in the same color the
numbers, which have equal remainders in division by k. This makes it possible to determine
the color of the sum of any couple of integers uniquely. Obviously, the function
fi(x,y)=x+y onthe set Z has the chromatic number 2, viz H(x+ y,Z)=2. The coloring
of the even numbers in one color and the odd numbers in the other color serves as a model of
the required coloring in two colors. This result has been formulated above, in the example 3,
using the group viewpoint.

2. The chromatic number of the function fz(x, y) =xy on the set Z is also equal to 2.
The coloring of the even numbers in one color and the odd numbers in the other color serves
as a model of the required coloring in two colors.

3. The chromatic number of the function fz(x, y) = xy on the set R is also equal to 2.
In order to demonstrate it, let us paint zero in one color, and the rest of the real numbers in the
other color. Note that the function f,(x,y)=xy on the set R can be also associated with the

chromatic class 3. For this purpose it is necessary to paint odd numbers, even numbers and
zero in different colors.
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The proof of the fact that the chromatic number of the arbitrary linear function and the
chromatic number of the function f(x,y)=x*—y?, on the Rx R are equal to infinity is the
main result of this article.

Theorem 1. If aff # 0, then H(ax+[5’y + y,R): 00,

Proof. Let us suppose that H (oax+ P+ 7,R): k . Then there exists such coloring of
the set R in k colors, that one can determine the color of the expression ax+ fy+y

uniquely, if the colors of the arguments are known. Such coloring of the set R determines the
equivalence relation on it. Each equivalence class consists of the numbers of the same color.
By hypothesis the following relation takes place

xl~x2/\y1~y2:>(0061+,By1+7/)N(ax2+ﬁy2+7/). (D
Lemma 1.1. The following implication takes place:

xX~y=>ax+t~ay+t VteR. (2)

Proof. Let us designate such number that fs+y =t by s. It always exists, because
S # 0. Then, by reason of (1), we obtain the following

x~y/\s~s:>(0ax+ﬂs+)/)~(ay+ﬂs+}/)<:>ax+t~ay+t.

Lemma 1.2. If even one equivalence class, which does not contain 0, involves only
one element, then all equivalence classes, which do not contain 0, are one-element classes.

Proof. Let the element a # 0 be unique in its class. It means, that z~a < z=a. Let
us consider the arbitrary element x € R,x # 0. We accept the existence of y#x and y~x.

Let t =a—ax . By applying lemma 1.1, we obtain
x~y:>ax+a—oax:a~ay+a—ax:a+a(y—x),

viz x~y=a~a+ a(y - x). The last equivalence 1is possible if only
a=a-+ a(y —x). We obtain y = x, taking into the consideration, that & # 0. It means, that

the class, which contains x, is one-element class, which was to be proved.

Let us consider the one-element class, which contains 0. It follows from the lemma 1.2
that, the number of classes is equal to the number of the real numbers, viz it is infinite. This
variant is impossible, because the required number of the colors should be finite. Hence, there
exists z#0, z~0.

Lemma 1.3.If z~0, then naz~0 VneZ.

Proof. Let us use the method of mathematical induction.

For n=0 the proposition clearly holds. Let us suppose that it is also true for ne Z,
that is naz ~ 0~ z. We take ¢ = naz in the forward induction and apply (2). Then

z~0=az+naz=(n+1)az~naz~0=(n+1)az~0.
We take ¢ = (n - l)az in the backward induction. Using the implication (2), we obtain
0~z:>(n—l)az~az+(n—l)az=naz~0:>(n—1)az~ 0.

Lemma 1.4. If x ~ y, then a(x—y)~a(y-x)~0.
Proof. Let us apply lemma 1.1 for 1 = -y . We obtain
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x~y:>ax—ay:a(x—y)~ay—ay:0.

One can prove the second part of the statement by a similar way.
Let us prove the theorem 1. Put H (ax + fy + 7,R) =k . Let us consider the element z

1 .
such that z+0. Let us denote y:—zé. The system {O, y,2y,3y,...,ky} contains k+1
a” k!

elements, which are painted in k colors. According to Dirichlet principle, at least two
elements from this system are painted in the same color. Let it be the elements py and

(p + m)y , besides 0 < m < k. According to lemma 1.4

a((p+m)y—py)=may~0.

!
Since 0<m <k, then n:£ is integer. According to lemma 1.3 the number
m

Ko, kla’z . . L . .
an(moqy) =—ma’'y= PR =z 1s equivalent to 0, but this is in contrast with the selection
m a” k!
of the element z . The theorem is proved.
Remark. The conclusion of the theorem 1 remains true if one considers the set O
(a, B,y € Q) instead of the set R.
Corollary. There are no subgroups of the normal index of the groups (R,+) and
(Qa+)'
Proof. Let us confine ourselves to the consideration of the set R . The proof for the set
Q is similar to the proof for the set R .

We take = =1, y=0 in the theorem, then H (x+ y,R)=0. Let us assume the
contrary. The group (R,+) has the subgroup M (which is normal subgroup because of the

commutativity of the group R) such that %;P, where |P|:k, l<k<oo. Let us

designate the mapping, which defines the chosen homomorphism, by f.We paint all the

elements in each of the complete inverse images of the elements from P in the same color. At
such coloring two real numbers are alike in color when and only when their images are the
same.

Let us consider two sums a+b and @ +b , the corresponding elements of which are
alike in color. Let us prove that these sums are alike in colors. By virtue of the fact that

fla+b)= f(a)+ f(b)= f(@)+ f(g)= f(c7+l;). Hence, the color of the sum is defined
uniquely by the colors of the addends. It means that the function x+ » on R belongs to the
chromatic k - class. It is in contrast with the statement H (x+ y,R): . The corollary is

proved.
Let us give an example of the quadratic polynomial, the chromatic number of which is
infinite.

Theorem 2. H(x2 —yZ,R)= 0.
Put H (x2 - y2,R)= k. The set R is divided into the finite number of the equivalence

classes. Each class consists of the numbers, which are painted in the same color. The
following relation takes place

X~ X Ay~ = (= )~ (2 = 22). 3)
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Lemma 2.1. If x ~ y, then x* — > ~0.

Proof. One can prove the lemma using the formula (3) for the equivalences
X~YAY~Y.

Lemma 2.2. If x ~ 0, then

t?~t*—x* VteR 4)
and
—tP~x*—t* VteR. (5)

Proof. The relation (4) follows from the equivalences ¢t ~tA0~x and from the
formula (3). The relation (5) follows from the equivalences 0 ~x At ~¢.

Lemma 2.3.1f z~0, then mz> ~0 Vme Z.
Proof. Let us apply induction on m . If m =0 the proposition clearly holds. We obtain

z° ~0~—z", using lemma 2.2 for the relation z~0, when #=0. Let us prove, that the
statement is valid for all positive integers m . For m =1 the statement is proved. Let it be true
for some m >0, that is mz> ~0. We put > =(m+1)z* and we apply formula (4) for the
equivalence z> ~ 0. We obtain (m +1)z* ~ (m+1)z* — 2> = mz> ~ 0.

Let us prove that the statement is true for all negative integers m . For m =—1 the
statement is proved.

Let it be true for some m < 0, that is mz*> ~0.

We put * = —(m - l)z2 and we apply formula (5) for the equivalence z* ~ 0.

We obtain — (— (m— l)zz)= (m—1)z> ~ z* - (— (m — l)zz)= mz* ~0.

Let us return to the proof of the theorem 2. If arbitrary s > 0, then there exists z, such

that z*=5. Put y =%. There are, at least, two elements among the elements my,m =0,k
which belong to the same class (Dirichlet principle)

dn,meN:0<m<n<kAany~my.

According to lemma 2.1 we obtain n’y* —m’y’ = (n2 - 1112>y2 ~0.
Since k>n>m=>0, then k> >n>>n’ —m’. Hence k! is divisible by (n2 — mz), that

4
is why r = (Jzk—z'zL)z is integer.
n —m

It follows from the lemma 2.3 that

-m = ( ) n-—m
( )ZJ’ ( m)z( )z(k2|)4

Since s is arbitrary number, then all positive numbers are equivalent to zero.

If s <0, then there exists z >0 such that s =—z>.

We proved that all positive numbers are equivalent to zero. Applying (3), we obtain
0~0Az~0=>0"-z"=5~0°-0°=0. It means that all negative numbers are also
equivalent to zero. This implies that there exists only one equivalence class. But, according to
the definition, there are at least two equivalence classes. The obtained contradiction proves
the theorem.

—Z =85~
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The introduced concept of the chromatic number of the function of two variables can
be generalized to the functions of any number of the variables and to the case of the arbitrary
mappings of the Cartesian power of the set into itself.

Conclusions
The concepts of the chromatic class and the chromatic number of the function have
been introduced in the article. The relation between these concepts and the group theory has
been obtained. It has been proved that the linear function of two real variables
f (x, y): ox+ fy+y,aff #0 has no finite chromatic number. The similar result has been

proved for the function g(x, y)=x* — y* of the real variables.

This result can be formulated as follows:

- the functions f (x, y) and g(x, y) (and the function axx,..x, +b where
n>1,ab # 0, which was considered in the article [1] before) can not be R - functions at any

selection of the accompanying functions of the polyvalent logic;
- the set R can not be painted in the finite number of the colors in such a way that the

color of the function ax+ fy+y, where aff #0 could be determined by the colors of its

arguments uniquely. It is also true for the functions x*— )’

n>1ab#0.

and axx,..x, +b, where
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