ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ МЕТОДІВ ЗЛИТТЯ СУПУТНИКОВИХ ЗНІМКІВ ВИСОКОГО ПРОСТОРОВОГО РОЗРІЗНЕННЯ

Автор(и)

DOI:

https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.11

Ключові слова:

злиття, гіперсферичне перетворення, супутникові знімки, високе просторове розрізнення, вейвлет-перетворення, нормалізований індекс вегетації

Анотація

Впродовж останніх років космічні знімальні системи стрімко розвиваються. На даний момент вони дозволяють отримувати дані з просторовим розрізненням півметра і менше для дослідження стану лісів, морських акваторій, шельфів тощо. Поява знімків високого просторового розрізнення вимагає застосування спеціальних методів їх обробки. Тому в даній роботі проведено аналіз ефективності відомих методів злиття супутникових знімків високого просторового розрізнення. Порівнюються методи: GIHS, Brovey, HPF, HCT, вейвлет-перетворення та комбінований HSV-HCT, з метою знаходження їх відмінностей та подальшого ефективного використання. Оцінка якості зображення відіграє важливу роль в обробці супутникових знімків, особливо при використанні методів підвищення інформативності зображень. Дослідження ефективності методів злиття відбувалися на первинних супутникових знімках високого просторового розрізнення WorldView-2. Одним із критеріїв перевірки спектральних властивостей синтезованих зображень є розрахунок спектрального індексу NDVI. Отриманні значення індексу NDVI для методів «Brovey» та HPF свідчать про колірні спотворення в порівнянні з еталонними даними. Це обумовлено тим, що методи «Brovey» та HPF засновані на злитті трьох канальних зображень та не враховують інформацію, яка міститься в ближньому інфрачервоному діапазоні. Порівняння кількісних показників (RMSE, ERGAS та NDVI) та візуальні результати показали перевагу комбінованого HSV-HCT методу. Це досягається, зокрема, за рахунок попередньої обробки первинних знімків, оброблення даних у локалізованих спектральних базисах, оптимізованого за інформаційними характеристиками, та використання інформації, яку містить зображення інфрачервоного діапазону. Тестування показали, що синтезоване зображення високого просторового розрізнення з максимальною інформативністю досягається при комплексному використанні методів злиття, що дозволяє підвищити просторову розрізненість багатоканального зображення без істотних колірних спотворень. Результати роботи можуть бути використані при подальшому розпізнаванні об’єктів та тематичній обробці знімків.

In recent years, satellites imaging systems have been developing rapidly. Nowadays, these satellites allow to obtain data with a spatial resolution of half a meter or less to monitoring the state of forests, sea areas, shelves, etc. Images of high spatial resolution are required to use of special methods of their processing. Therefore, in this paper we analyze the effectiveness of the known methods of fusion high spatial resolution satellite images. The pan-sharpening methods under consideration were the GIHS, the Brovey, the HPF, the HCT, the wavelet-transform and the combined HSV-HCT for conducts their detailed comparative analysis. Image quality assessment plays an important role in the processing of satellite images, especially when using methods to increase the information content of images. Experimental evaluation performed on eight-primary satellite images of high spatial resolution obtained WorldView-2 satellite. Quantitative characteristics of spectral properties of synthesized images were obtained by calculating the NDVI index. The NDVI index for the methods "Brovey" and HPF indicate color distortion in comparison with the reference data. This is due to the fact that the Brovey and HPF methods are based on the fusion of three channel images and do not include the information contained in the near infrared range. The quantitative (RMSE, ERGAS та NDVI) and visual results show the superiority of the combined HSV-HCT method over the conventional and state-of-art image resolution enhancement techniques of high resolution satellite images. This is achieved, in particular, by preliminary processing of primary images, data processing localized spectral bases, optimized performance information, and the information contained in the infrared image. The experimental results show that a synthesized high spatial resolution image with high information content is achieved with the complex use of fusion methods, which makes it possible to increase the spatial resolution of the original multichannel image without color distortions.

Посилання

Zhang Y. Understanding Image Fusion. Photogrammetric Engineering and Remote Sensing. 2004. Vol. 70. № 6. P. 657-661.

Hordiiuk D. M., Hnatushenko V. V. Neural Network and Local Laplace Filter Methods Applied to Very High Resolution Remote Sensing Imagery in Urban Damage Detection. 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), (Lviv, October 17-20, 2017). P. 363366. DOI: 10.1109/YSF.2017.8126648.

Basaeed E., Bhaskar H., Al-Mualla M. Beyond Pan-Sharpening: Pixel-Level Fusion in Remote Sensing Applications. 8th International Conference on Innovations in Information Technology (Innovations’12). (UAE, Al-Ain, March 18-20, 2012). P. 139–144.

Amro J., Mateos M., Vega R., Molina A., Katsaggelos K. A Survey of Classical Methods and New Trends in Pansharpening of Multispectral Images. EURASIP Journal on Advances in Signal Processing. 2011. Article 79. 22 p.

Kahtan V. Yu., Hnatushenko V. V. A Wavelet and HSV Pansharpening Technology of High Resolution Satellite Images. Intelligent Information Technologies & Systems of Information Security (IntelITSIS 2020): International Conference. (Ukraine, Khmelnytskyi, June 10-12, 2020). Khmelnytskyi, 2020. P. 67-76.

Hnatushenko V., Hnatushenko Vik., Kavats O., Shevchenko V. Pansharpening Technology of High Resolution Multispectral and Panchromatic Satellite Images. Scientific Bulletin of National Mining University. 2015. Issue 4. P. 91-98.

Rahmani S., Strait M., Merkurjev D., Moeller M., Wittman T. An Adaptive IHS Pan-Sharpening Method. IEEE Geoscience and Remote Sensing Letters. 2010. Vol. 7. Issue 4. P. 746–750.

Tu T., Su S., Shyu H., Huang P. A New Look at IHS-Like Image Fusion Methods. Information Fusion. 2001. Vol. 2. № 3. P. 177-186.

Ghassemian H. A Review of Remote Sensing Image Fusion Methods. Information Fusion. 2016. Vol. 32. P. 75–89. DOI:10.1016/j.inffus.2016.03.003.

Wang Z., Ziou D., Li D., Li Q. A Comparative Analysis of Image Fusion Methods. IEEE Transactions on Geoscience and Remote Sensing. 2005. Vol. 43. № 6. P. 1391-1402.

Zhang J. Multi-Source Remote Sensing Data Fusion: Status and Trends. International Journal of Image and Data Fusion. 2010. Vol. 1. Issue 1. P. 5-24.

Li X., Xu F., Lyu X., Tong Y., Chen Z., Li S., & Liu D. A Remote-Sensing Image Pan-Sharpening Method Based on Multi-Scale Channel Attention Residual Network. IEEE Access. 2020. Vol. 8. P. 27163–27177. DOI:10.1109/access.2020.2971502.

Aishwarya N., Abirami S., Amutha R. Multifocus Image Fusion Using Discrete Wavelet Transform and Sparse Representation. Wireless Communications, Signal Processing and Networking (WiSPNET): International Conference. (India, Chennai, March 23-25, 2016). Chennai, 2016. P. 23772382. DOI: 10.1109/WiSPNET.2016.7566567.

Гнатушенко В. В., Шевченко В. Ю., Кавац О. О. Підвищення просторового розрізнення багатоканальних аерокосмічних зображень високого просторового розрізнення на основі гіперсферичного перетворення. Радіоелектроніка, інформатика, управління. 2015. № 1 (32). С. 73-79.

Meinel G., Neubert M. A Comparison of Segmentation Programs for High Resolution Remote Sensing Data. International Archives of Photogrammetry and Remote Sensing. 2014. Vol. 35. Part B. P. 1097-1105.

Maglione P., Parente C., Vallario A. Pan-Sharpening Worldview-2: IHS, Brovey and Zhang Methods In Comparison. International Journal of Engineering and Technology. 2016. Vol. 8. Issue 2. P. 673-679.

Gangkofner U. G., Pradhan P. S., Holcomb D. W. Optimizing the High-Pass Filter Addition Technique for Image Fusion. Photogrammetric Engineering and Remote Sensing. 2008. Vol. 74. Issue 9. P. 1107-1118.

Li Xu, Mingyi He, Zhang Lei. Hyperspherical Color Transform Based Pansharpening Method for WorldView-2 Satellite Images. Industrial Electronics and Applications: 8th IEEE Conference. (Australia, Melbourne, June 19–21, 2013). Melbourne, 2013. P. 520523. DOI: 10.1109/ICIEA.2013.6566424.

Aishwarya N., Abirami S., Amutha R. Multifocus image fusion using Discrete Wavelet Transform and Sparse Representation. Wireless Communications, Signal Processing and Networking (WiSPNET 2016): International Conference. (India, Chennai, March 23-25, 2016). Chennai, 2016. P. 2377-2382. DOI: 10.1109/WiSPNET.2016.7566567.

Chen S., Zhang R., Su H., Tian J., Xia J. Scaling-up transformation of multisensor images with multiple resolutions. Sensors. 2009. Issue 9. P. 1370-1381.

Dr. Mustafa, Mustafa T. Using Water Indices (ndwi, mndwi, ndmi, wri and awei) to Detect Physical and Chemical Parameters by Apply Remote Sensing and GIS Techniques. International Journal of Research - GRANTHAALAYAH. 2017. Vol. 5. Issue 10. P. 117-128. DOI: 10.5281/zenodo.1040209.

Zhang, Y. (2004). Understanding Image Fusion. Photogrammetric Engineering and Remote Sensing. 70, 6, 657-661.

Hordiiuk, D. M., & Hnatushenko, V. V. (2017). Neural Network and Local Laplace Filter Methods Applied to Very High Resolution Remote Sensing Imagery in Urban Damage Detection. Proceedings of the 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF) (Lviv, October 17-20, 2017), pp. 363366. DOI: 10.1109/YSF.2017.8126648.

Basaeed, E., Bhaskar, H., & Al-Mualla, M. (2012). Beyond Pan-Sharpening: Pixel-Level Fusion in Remote Sensing Applications. Proceedings of the 8th International Conference on Innovations in Information Technology (Innovations’12). (UAE, Al-Ain, March 18-20, 2012), pp. 139–144.

Amro, J., Mateos, M., Vega, R., Molina, A., & Katsaggelos, K. (2011). A Survey of Classical Methods and New Trends in Pansharpening of Multispectral Images. EURASIP Journal on Advances in Signal Processing. Article 79, 22 p.

Kahtan ,V. Yu., & Hnatushenko, V. V. (2020). A Wavelet and HSV Pansharpening Technology of High Resolution Satellite Images. Proceedings of the Intelligent Information Technologies & Systems of Information Security (IntelITSIS 2020): International Conference. (Ukraine, Khmelnytskyi, June 10-12, 2020). Khmelnytskyi, pp. 67-76.

Hnatushenko, V., & Hnatushenko, Vik., Kavats, O., Shevchenko, V. (2015). Pansharpening Technology of High Resolution Multispectral and Panchromatic Satellite Images. Scientific Bulletin of National Mining University. 4, 91-98.

Rahmani, S., Strait, M., Merkurjev, D., Moeller, M., & Wittman, T. (2010). An Adaptive IHS Pan-Sharpening Method. IEEE Geoscience and Remote Sensing Letters. 7, 4, 746–750.

Tu, T., Su, S., Shyu, H., & Huang, P. (2001). A New Look at IHS-Like Image Fusion Methods. Information Fusion. 2, 3, 177-186.

Ghassemian, H. (2016). A Review of Remote Sensing Image Fusion Methods. Information Fusion. 32, 75–89. DOI:10.1016/j.inffus.2016.03.003.

Wang, Z., Ziou, D., Li, D., & Li, Q. (2005). A Comparative Analysis of Image Fusion Methods. IEEE Transactions on Geoscience and Remote Sensing. 43, 6, 1391-1402.

Zhang, J. (2010). Multi-Source Remote Sensing Data Fusion: Status and Trends. International Journal of Image and Data Fusion. 1,1, 524.

Li, X., Xu, F., Lyu, X., Tong, Y., Chen, Z., Li, S., & Liu, D. (2020). A Remote-Sensing Image Pan-Sharpening Method Based on Multi-Scale Channel Attention Residual Network. IEEE Access. 2020. Vol. 8. P. 27163–27177. DOI:10.1109/access.2020.2971502.

Aishwarya, N., Abirami, S., & Amutha, R. (2016). Multifocus Image Fusion Using Discrete Wavelet Transform and Sparse Representation. Proceedings of the Wireless Communications, Signal Processing and Networking (WiSPNET): International Conference. (India, Chennai, March 23-25, 2016). Chennai, pp. 23772382. DOI: 10.1109/WiSPNET.2016.7566567.

Hnatushenko, V. V., Shevchenko, V. Iu., & Kavats, O. O. (2015). Pidvyshchennia prostorovoho rozriznennia bahatokanalnykh aerokosmichnykh zobrazhen vysokoho prostorooho rozriznennia na osnovi hipersferychnoho peretvorennia. Naukovyi zhurnal Zaporizkoho natsionalnoho tekhnichnoho universytetu, radioelektronika, informatyka, upravlinnia, Zaporizhzhia. 1, 32, 73-79.

Meinel, G., & Neubert, M. (2014). A Comparison of Segmentation Programs for High Resolution Remote Sensing Data. International Archives of Photogrammetry and Remote Sensing. 35, Part B, pp. 1097-1105.

Maglione, P., Parente, C., & Vallario, A. (2016). Pan-Sharpening Worldview-2: IHS, Brovey and Zhang Methods In Comparison. International Journal of Engineering and Technology. 8, 2, 673-679.

Gangkofner, U. G., Pradhan, P. S., & Holcomb, D. W. (2008). Optimizing the High-Pass Filter Addition Technique for Image Fusion. Photogrammetric Engineering and Remote Sensing. 74, 9, 1107-1118.

Li, Xu, Mingyi, He, & Zhang, Lei. (2013). Hyperspherical Color Transform Based Pansharpening Method for WorldView-2 Satellite Images. Proceedings of the Industrial Electronics and Applications: 8th IEEE Conference. (Australia, Melbourne, June 19–21, 2013). Melbourne, pp. 520523. DOI: 10.1109/ICIEA.2013.6566424.

Aishwarya, N., Abirami, S., & Amutha, R. (2016). Multifocus image fusion using Discrete Wavelet Transform and Sparse Representation. Proceedings of the Wireless Communications, Signal Processing and Networking (WiSPNET 2016): International Conference. (India, Chennai, March 23-25, 2016). Chennai, pp. 23772382. DOI: 10.1109/WiSPNET.2016.7566567.

Chen, S., Zhang, R., Su, H., Tian, J., & Xia, J. (2009). Scaling-up transformation of multisensor images with multiple resolutions. Sensors. 9, 1370-1381.

Dr. Mustafa, Mustafa T. (2017). Using Water Indices (ndwi, mndwi, ndmi, wri and awei) to Detect Physical and Chemical Parameters by Apply Remote Sensing and GIS Techniques. International Journal of Research - GRANTHAALAYAH. 2017. 5, 10, 117-128. DOI: 10.5281/zenodo.1040209.

##submission.downloads##

Опубліковано

2020-09-06 — Оновлено 2020-09-07

Версії

Як цитувати

Каштан , В. Ю., & Гнатушенко , В. В. (2020). ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ МЕТОДІВ ЗЛИТТЯ СУПУТНИКОВИХ ЗНІМКІВ ВИСОКОГО ПРОСТОРОВОГО РОЗРІЗНЕННЯ . APPLIED QUESTIONS OF MATHEMATICAL MODELLING, 3(2.1), 117-127. https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.11 (Original work published 06, Вересень 2020)