USING MACHINE LEARNING TO PREDICT THE STRESS-STRAIN STATE OF A CIRCULAR PLATE
DOI:
https://doi.org/10.32782/KNTU2618-0340/2021.4.2.2.20Анотація
Artificial neural networks are used in various areas related to information processing. For example, in such areas as: pattern recognition, optimization problems, control theory, engineering design problems, extrapolation and forecasting. There is a large amount of software that uses the capabilities of artificial neural network technology. In modern production, computer-aided design systems have become widespread, which allow to design technological processes with less time and money, with increasing accuracy of the designed processes and processing programs.
The development of machine learning methods and models allows you to make quick estimates of the necessary parameters of the state of the object. From a practical point of view, machine learning models for predicting the values of structural parameters can serve as interactive assistants in the design process. One of the topical issues in the application of neural networks is their structural optimization, the choice of the optimal number of layers, neurons, activation functions and so on. In this paper, the use of machine learning to predict the stress-strain state of a circular plate is considered. An algorithm for generating circular plate parameters has been developed. A model of an artificial neural network for predicting the stress-strain state of a circular plate is constructed. The test sample, which contains the possible states of the plate depending on the geometric and mechanical parameters, was constructed using analytical formulas and the finite element method. Learning models based on artificial neural networks are built. The constructed models allow predicting the deflection in the center of the plate, as well as the maximum value of the stress intensity according to Mises. The main advantage of an artificial neural network is the speed of prediction. The calculation of the required characteristics is almost instantaneous (milliseconds). Thus, "trained" artificial neural networks can serve as interactive assistants in the design process.
Штучні нейронні мережі застосовуються у різноманітних сферах, пов’язаних з обробкою інформації. Наприклад, в таких галузях як: розпізнавання образів, задачі оптимізації, теорія керування, вирішення інженерних задач проектування, екстраполяція та прогнозування. Існує велика кількість програмного забезпечення, що використовує можливості технологій штучних нейронних мереж. У сучасному виробництві широке поширення одержали системи автоматизованого проектування, які дозволяють проектувати технологічні процеси з меншими витратами часу та засобів, зі збільшенням точності спроектованих процесів і програм обробки.
Розробка методів і моделей машинного навчання дозволяє робити швидкі оцінки необхідних параметрів стану об’єкту. З практичної точки зору моделі машинного навчання для прогнозування значень параметрів стану конструкції можуть слугувати як інтерактивні асистенти у процесі проектування. Одним із актуальних питань застосувань нейронних мереж є їх структурна оптимізація, тобто, вибір оптимальної кількості шарів, нейронів, функцій активації тощо. У даній роботі розглянуто використання машинного навчання для прогнозування напружено-деформованого стану круглої пластинки. Розроблено алгоритм генерації параметрів круглої пластинки. Побудовано модель штучної нейронної мережі для прогнозування напружено-деформованого стану круглої пластинки. Тестову вибірку, яка містить можливі стани пластинки у залежності від геометричних і фізико-механічних параметрів, побудовано з використанням аналітичних формул і методу скінченних елементів. Побудовано моделі навчання на базі штучних нейронних мереж. Побудовані моделі дозволяють прогнозувати прогин у центрі пластинки, а також максимальне значення інтенсивності напружень за Мізесом. Основною перевагою штучної нейронної мережі є швидкість прогнозування. Обчислення необхідних характеристик відбувається майже миттєво (мілісекунди). Отже, «натреновані» штучні нейронні мережі можуть слугувати як інтерактивні помічники у процесі проектування.
Посилання
Abambres, M., Marcy, M., & Doz, G. (2018). Potential of Neural Networks for Structural Damage Localization engrXiv. pp. 3–26. URL: https://engrxiv.org/rghpf/ DOI: 10.31224/osf.io/rghpf.
Abambres, M., Corrêa, R., A. P. da Costa, & F. Simões, F. (2019). Potential of neural networks for maximum displacement predictions in railway beams on frictionally damped foundations engrXiv. pp. 2–31. URL: https://engrxiv.org/m3b7j/ DOI: 10.31224/osf.io/m3b7j.
Abambres, M., Rajana, K., Tsavdaridis, K., & Ribeiro, T. (2018). Neural Network-based formula for the buckling load prediction of I-section cellular steel beams engrXiv. pp. 2–17. URL: https://engrxiv.org/wg7hd/ DOI: 10.31224/osf.io/wg7hd.
Onur Avci, P. O., & Abdeljaber, A. O. (2016). Self-Organizing Maps for Structural Damage Detection: A Novel Unsupervised Vibration-Based Algorithm. Journal of Performance of Constructed Facilities. 30, 3, 1–11.
Zelentsov, D. G. (2018). Neyronnyie seti kak sredstvo povyisheniya tochnosti i effektivnosti resheniya zadach optimizatsii. Komp’yuterne modelyuvannya: analIz, upravlInnya optimIzatsIya. 2, 18–26.
Mazurov, V. D. (2010). Matematicheskie metodyi raspoznavaniya obrazov : uch.posobie, 2-e izd. Ekaterinburg : Ural. un-t
Hany Sallam, Carlo S. Regazzoni, Ihab Talkhan, & Amir Atiya. (2008). Evolving neural networks ensembles nnes. IAPR Workshop on Cognitive Information Processing, pp. 142–147.
Jin, C., Jang, S, Sun, X., Li, J., & Christenson, R. (2016). Damage detection of a highway bridge under severe temperature changes using extended Kalman filter trained neural network Journal of Civil Structural Health Monitoring. 6, 545 – 560.
Timoshenko, S.P., & Voynovskiy-Kriger, S. (1966). Plastinki i obolochki. 1966 URL: pnu.edu.ru/media/filer_public/2013/04/10/5-5_timoshenko_1966.pdf. pp. 66-72.