МАТЕМАТИЧНА МОДЕЛЬ ПАРАМЕТРИЧНОГО ПЕРЕТВОРЮВАЧА ВОЛОГОСТІ З ЧАСТОТНИМ ВИХОДОМ

Автор(и)

  • Олександр Володимирович Осадчук https://orcid.org/0000-0001-6662-9141
  • Людмила Вікторівна Крилик
  • Ярослав Олександрович Осадчук

DOI:

https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.19

Ключові слова:

частотний перетворювач вологості, вологочутливий ємнісний елемент, від’ємний диференційний опір, функція перетворення, рівняння чутливості

Анотація

Розроблено математичну модель частотного параметричного перетворювача вологості з ємнісними елементами виготовленими на основі: NaCl+полімер, NaCl;  BaCl2+полімер, BaCl2, а також ємнісних елементів виготовленими на основі комплексних сполук. Параметричний перетворювач вологості з частотним виходом розроблено на основі біполярної транзисторної структури, що утворює активну індуктивність з динамічним від’ємним опором, яка з вологочутливим конденсатором  утворює коливальний контур перетворювача. Математичне моделювання та експериментальні дослідження показали, що в діапазоні відносної вологості від 30 % до 100 %, діапазон зміни ємності для вологочутливого елементу на основі NaCl становить від 0,030·10-8 Ф до 3,9·10-8 Ф, а для двошарової структури на основі NaCl+полімер – від 0,125·10-8 Ф до 3,9·10-8 Ф. Для вологочутливого елементу на основі BaCl2 – діапазон зміни ємності становить від 0,060·10-8 Ф до 3,9·10-8 Ф, а для двошарової структури на основі BaCl2+полімер – від 0,130·10-8 Ф до 3,9·10-8 Ф. На основі експериментальних досліджень встановлено, що на чутливість сенсора впливає склад комплексних сполук, а саме найчутливішим в діапазоні вологості від 7 % до 27 % є ємнісний елемент виготовлений на основі гетерометалевої комплексної сполуки II, яка містить два атома стибію. Чутливість такого ємнісного елемента набуває значення 285 пФ/%.  Залежність ємності від відносної вологості, в діапазоні від 30 % до 75 %, практично лінійна, а чутливість дорівнює 135 пФ/%. В діапазоні 75…95 % спостерігається різке зростання чутливості аж до 450 пФ/% для всіх ємнісних елементів виготовлених на основі гетерометалевих комплексних сполук I – IV. На основі математичного моделювання отримано графічні залежності функції перетворення та чутливості частотного параметричного перетворювача вологості. Найбільша чутливість частотного параметричного перетворювача вологості для зміни вологості навколишнього середовища становить 62…107 кГц/%.

 

A mathematical model of a frequency parametric humidity transducer with capacitive elements based on: NaCl+polymer, NaCl; BaCl2+polymer, BaCl2, as well as capacitive elements based on complex compounds. A parametric humidity transducer with a frequency output is developed on the basis of a bipolar transistor structure, which forms an active inductance with dynamic negative resistance, which forms an oscillatory circuit of the transducer with a humidity-sensitive capacitor. Mathematical modeling and experimental studies have shown that in the range of relative humidity from 30 % to 100 %, the range of capacitance change for a humidity sensitive element based on NaCl is from 0.030·10-8 F to 3.9·10-8 F, and for a two-layer structure based on NaCl+polymer - from 0.125·10-8 F to 3.9 ·10-8 F. For a moisture sensitive element based on BaCl2 - the range of capacitance change is from 0.060·10-8 F to 3.9·10-8 F, and for a two-layer structure based on BaCl2+polymer - from 0.130·10-8 F to 3.9·10-8 F. On the basis of experimental studies it was found that the composition of complex compounds affects the sensitivity of the sensor, namely, the sensitive in the humidity range from 7 % to 27 % is a capacitive element, which is made on the basis of a hetero-metallic complex compound II, contains two antimony atoms. The sensitivity of such a capacitive element is 285 pF/%. The capacitance versus relative humidity in the range from 30 % to 75 % is almost linear, and the sensitivity is 135 pF/%. In the range of 75...95 %, there is a sharp increase in sensitivity up to 450 pF/% for all capacitive elements based on hetero-metallic complex compounds I - IV. On the basis of mathematical modeling, graphical dependences of the conversion function and sensitivity of the frequency parametric humidity transducer are obtained. The highest sensitivity of the frequency parametric humidity transducer from changes in the ambient humidity is 62 ... 107 kHz/%.

Посилання

Bozhi Yang, Burak Aksak, Qiao Lin, Metin Sitti. Compliant and Low-cost Humidity Sensors using Nano-porous Polymer Membranes. Appeared in Sensors and Actuators B: Chemical. 2006. Vol. 114. № 1. P. 254–262.

Джексон Р. Г. Новейшие датчики. Москва: Техносфера, 2007. 384 с.

Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. Москва: Техносфера, 2012. 624 с.

Осадчук В. С., Осадчук О. В. Реактивные свойства транзисторов и транзисторных схем. Винница: «Универсум-Винница», 1999. 275 с.

Osadchuk A. V., Osadchuk V. S., Osadchuk I. A., Seletska O. O., Kisała P., Nurseitova K. Theory of Photoreactive Effect in Bipolar and MOSFET Transistors. Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. Vol. 11176. (Poland, Wilga, May 27 - June 2, 2019), pp. 111761I-1-111761I-12.

Osadchuk A. V., Osadchuk V. S., Osadchuk I. A., Kolimoldayev Maksat, Komada Paweł, Mussabekov Kanat. Optical Transducers with Frequency Output. Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments. Vol. 10445. (Poland, Wilga, May 28 - June 6, 2017), pp. 10445-129-10445-132.

Farahani H., Wagiran R., Hamidon M. N. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors. 2014. Vol. 14. Issue 5. P. 7881–7939.

Pelino M., Cantalini C. Principles and applications of ceramic humidity sensors. Active and Passive Electronic Components. 1994. Vol. 16. P. 69–87.

Tripathy Ashis, Pramanik Sumit, Manna Ayan, Bhuyan Satyanarayan, Shah Nabila Farhana Azrin, Radzi Zamri, Osman Noor Azuan Abu. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca, Mg, Fe, Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption. Sensors. 2016. Vol. 16. Issue 7. Р. 1135-1-135-18.

Lazarus Nathan, Bedair Sarah S., Lo Chiung-C., Fedder Gary K. CMOS-MEMS Capacitive Humidity Sensor. Journal of Microelectromechanical System. 2010. Vol. 19, № 1. P. 183 –191.

Zhi, Chen, Chi Lu. Humidity Sensors: A Review of Materials and Mechanisms. Sensor Letters. 2005. Vol. 3. № 4. P. 274 –295.

Осадчук В. С., Осадчук О. В., Крилик Л. В. Сенсори вологості: монографія. Вінниця: УНІВЕРСУМ – Вінниця, 2003. 208 с.

Каяцкас А. А. Основы радиоэлектроники. Москва: Высшая школа, 1988. 464 с.

Bozhi, Yang, Burak, Aksak, Qiao, Lin, & Meti,n Sitti. (2006). Compliant and Low-cost Humidity Sensors using Nano-porous Polymer Membranes. Appeared in Sensors and Actuators B: Chemical. 114, 1, 254–262.

Dzhekson, R. G. (2007). Novejshie datchiki. Moskva: Tekhnosfera.

Sharapova, V. M., & Polishhuka, E. S. (Eds.) (2012). Datchiki: Spravochnoe posobie. Moskva: Tekhnosfera.

Osadchuk, V. S., & Osadchuk, O. V. (1999). Reaktyvni vlastyvosti tranzystoriv i tranzystornykh skhem: monohrafiia. Vinnytsia, «UNIVERSUM – Vinnytsia».

Osadchuk, A. V., Osadchuk, V. S., Osadchuk, I. A., Seletska, O. O., Kisała, P., & Nurseitova, K. (2019). Theory of Photoreactive Effect in Bipolar and MOSFET Transistors. Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. Vol. 11176. (Poland, Wilga, May 27 - June 2, 2019), pp. 111761I-1-111761I-12.

Osadchuk, A. V., Osadchuk, V. S., Osadchuk, I. A., Kolimoldayev, Maksat, Komada, Paweł, & Mussabekov, Kanat. (2017). Optical Transducers with Frequency Output. Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments. Vol. 10445. (Poland, Wilga, May 28 - June 6, 2017), pp. 10445-129-10445-132.

Farahani, H., Wagiran, R., & Hamidon, M. N. (2014). Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors. 14, 5, 7881–7939.

Pelino M., & Cantalini C. (1994). Principles and applications of ceramic humidity sensors. Active and Passive Electronic Components. 16, 69–87.

Tripathy, Ashis, Pramanik, Sumit, Manna, Ayan, Bhuyan, Satyanarayan, Shah, Nabila Farhana Azrin, Radzi, Zamri, & Osman, Noor Azuan Abu. (2016). Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca, Mg, Fe, Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption. Sensors. 16, 7, 1135-1-135-18.

Lazarus, Nathan, Bedair, Sarah S., Lo, Chiung-C., & Fedder, Gary K. (2010). CMOS-MEMS Capacitive Humidity Sensor. Journal of Microelectromechanical System. 19, 1, 183 –191.

Zhi, Chen, & Chi Lu. (2005). Humidity Sensors: A Review of Materials and Mechanisms. Sensor Letters. 3, 4, 274 –295.

Osadchuk V. S., Osadchuk O. V., & Krylyk L. V. (2003). Sensory volohosti: monohrafiia. Vinnytsia, «UNIVERSUM – Vinnytsia».

Kayatskas, A. A. (1988). Osnovy radyoe lektroniki. Moskva, Vysshaya shkola.

##submission.downloads##

Опубліковано

2020-09-06 — Оновлено 2020-09-07

Версії

Як цитувати

Осадчук , О. В., Крилик , Л. В., & Осадчук , Я. О. (2020). МАТЕМАТИЧНА МОДЕЛЬ ПАРАМЕТРИЧНОГО ПЕРЕТВОРЮВАЧА ВОЛОГОСТІ З ЧАСТОТНИМ ВИХОДОМ. APPLIED QUESTIONS OF MATHEMATICAL MODELLING, 3(2.1), 206-215. https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.19 (Original work published 06, Вересень 2020)