ОЦІНКА ПОТУЖНОСТІ ДЕЯКИХ НЕПАРАМЕТРИЧНИХ КРИТЕРІЇВ ТРЕНДУ

Authors

DOI:

https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.17

Keywords:

часові ряди, тренд, критерії, потужність критерію, статистичне моделювання, діагностика

Abstract

Пропонується підхід до вибору і порівняння критеріїв, які застосовуються при аналізі часових рядів параметрів реєстрації технічного стану складних технічних об’єктів. Підхід заснований на встановлені важливої характеристики трендових критеріїв, а саме потужності таких критеріїв, які розглядаються як критерії розрізнення складних гіпотез. Для аналізу пропонується статистична модель породження даних у вигляді сукупності детермінованої трендової і випадкової складових. Детермінована складова розглядається у вигляді лінійного наближення її розвинення в ряд Тейлора. Таке припущення обґрунтовується необхідністю виявити тренд на найбільш короткому проміжку часу, на якому трендова складова допускає лінійне наближення. Випадкова складова приймається у вигляді вибірки з генеральної сукупності незалежних випадкових величин, які мають нормальний розподіл. Для аналізу обрані найбільш поширені непараметричні критерії тренду: критерій Вальда-Вольфовітца; критерій Бартлеса; критерій інверсій; а також параметричний кореляційний критерій для порівняння. Опорна гіпотеза має вигляд приналежності часового ряду до вибірки з генеральної сукупності незалежних випадкових величин, а альтернатива - приналежності до вибірки з лінійним трендом. Трендові статистики відповідних критеріїв сформовані на змінному або секційному непересічному вікні аналізу заданої розмірності. Параметром розвитку тренду обрано відношення приросту тренду за час аналізу до СКВ випадкової складової. Для розглянутих трендових критеріїв отримані залежності їх потужності від параметра розвитку тренду і ймовірності помилки першого роду (помилкова тривога), а також оперативні характеристики критеріїв. Аналіз виконано методами аналітичних оцінок і статистичного моделювання. Встановлено, що в разі альтернативи статистики аналізованих критеріїв нормалізуються, а статистика кореляційного критерію свого виду не змінює. Порівняння трендових критеріїв за потужністю при рівних значеннях ймовірності помилки першого роду дозволяє встановити перевагу критерію інверсій, а гірші показники має критерій Вальда-Вольфовітца. Оцінка потужності критеріїв тренду має важливе значення для прикладних застосувань, оскільки дозволяє встановити ймовірність помилки другого роду (пропуск тренду).

 

An approach to the selection and comparison of criteria that are used in the analysis of time series of parameters for recording the technical condition of complex technical objects is proposed. The approach is based on established important characteristics of trending criteria, namely the power of such criteria, which are considered as criteria for distinguishing complex hypotheses. For analysis, we propose a statistical model for generating data in the form of a combination of deterministic trend and random components. The deterministic component is considered as a linear approximation of its expansion in a Taylor series. This assumption is justified by the need to identify a trend in the shortest period of time at which the trend component allows a linear approximation. The random component is taken in the form of a sample from the general population of independent random variables that have a normal distribution. For analysis, the most common nonparametric trend criteria were selected: Wald-Wolfowitz criterion; Bartles test; inversion criterion; as well as a parametric correlation criterion for comparison. The support hypothesis has the form of belonging of a time series to a sample from the general set of independent random variables, and an alternative is belonging to a sample with a linear trend. Trend statistics of the relevant criteria are generated on a sliding or sectional disjoint analysis window of a given dimension. The trend development parameter was selected as the ratio of the trend growth during the analysis to the standard deviation of the random component. For the considered trend criteria, the dependences of their power on the trend development parameter and the probability of an error of the first kind (erroneous alarm), as well as operational characteristics of the criteria, are obtained. The analysis was carried out by methods of analytical estimates and statistical modeling. It has been established that in the case of an alternative, the statistics of the analyzed criteria are normalized, and the statistics of the correlation criterion do not change their type. A comparison of trending power criteria with equal values of the probability of an error of the first kind allows us to establish the advantage of the inversion criterion, and the criterion has the worst performance. Walda-Wolfowitz. Estimating the power of trend criteria is important for applied applications, since it allows you to establish the probability of a second kind of error (skipping a trend).

References

Kendall M., Stuart A. The Advanced Theory of Statistics. Vol. 2. New York: Hafner, 1979. 748 p.

Anderson O. D. Time Series Analysis and Forecasting. London: Butterworths, 1976. 182 p.

Box G. E. P., Jenkins G. M. Time Series Analysis: Forecasting and Control. San Francisco: Holden Day, 1976. 575 p.

Montgomery D. C., Johnson L. A., Gardiner J. S. Forecasting and Time Series Analysis. New York: McGraw-Hill, 1990. 381 p.

Shumway R. H. Applied Statistical Time Series Analysis. New York: Prentice Hall, 1988. 384 p.

Wei W. W. Time Series Analysis: Univariate and Multivariate Methods. New York: Addison-Wesley, 1989. 640 p.

Hvozdeva I., Myrhorod V., Derenh Y. The Method of Trend Analysis of Parameters Time Series of Gas-turbine Engine State. Proceedings of the AMiTaNS’17: AIP Conference. Vol. 1895. (Bulgaria, Albena, June 21–26, 2017), Melville, New York: American Institute of Physics, 2017. P. 030002-1-030002-9. DOI: 10.1063/1.5007361

Myrhorod V., Hvozdeva I., Demirov V. Some Interval and Trend Statistics with Non-Gaussian Initial Data Distribution. Proceedings of the AMiTaNS’18: AIP Conference. Vol. 2025. (Bulgaria, Albena, June 20–25, 2018), Melville, New York: American Institute of Physics, 2018. P. 040011-1-040011-12, DOI: 10.1063/1.5064895

Myrhorod V., Hvozdeva I., Derenh Y. Two-Dimensional Trend Analysis of Time Series of Complex Technical Objects Diagnostic Parameters. Proceedings of the AMiTaNS’19:11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences. Vol. 2164, №1. (Bulgaria, Albena, June 20–25, 2019), Melville, New York: American Institute of Physics, 2019. P. 040011-1-040011-12, DOI: 10.1063/1.5130815

Veretenikova I.V., Lemeshko Б. Criteria of Test against Absence of Trend in Dispersion Characteristics. Proceedings of the IFOST 2016: The 11th International Forum on Strategic Technology. (Rossia, Novosibirsk, June 1-3, 2016), Novosibirsk: Novosibirsk State Technical University, 2016. P. 333-337.

Korn G. A., Korn T. M. Mathematical Handbook. Mineola, New York, 2000. 1132 p.

Wald A., Wolfowitz J. An Exact Test for Randomness in the Non-Parametric Case Based on Serial Correlation. AMS. 1943. V. 14. P. 378-388.

Bartels R. The Rank Version of von Neumann’s Ratio Test for Randomness. Journal of the American Statistical Association.1982. Vol. 77. № 377. P. 40-46.

Himmelblau D. M. Process Analysis by Statistical Methods. New York: John Wiley and Sons, Inc., 1970. 463 p.

Kendall, M., & Stuart, A. (1979). The Advanced Theory of Statistics. Vol. 2. New York: Hafner.

Anderson, O. D. (1976). Time Series Analysis and Forecasting. London: Butterworths.

Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. San Francisco: Holden Day.

Montgomery, D. C., Johnson, L. A., & Gardiner, J. S. (1990). Forecasting and Time Series Analysis. New York: McGraw-Hill.

Shumway, R. H. (1988). Applied Statistical Time Series Analysis. New York: Prentice Hall.

Wei, W. W. (1989). Time Series Analysis: Univariate and Multivariate Methods. New York: Addison-Wesley.

Hvozdeva, I., Myrhorod, V., & Derenh, Y. (2017). The Method of Trend Analysis of Parameters Time Series of Gas-turbine Engine State. Proceedings of the AMiTaNS’17: AIP Conference. Vol. 1895. (Bulgaria, Albena, June 21–26, 2017), Melville, New York: American Institute of Physics, pp. 030002-1-030002-9. DOI: 10.1063/1.5007361

Myrhorod, V., Hvozdeva, I., & Demirov, V. (2018). Some Interval and Trend Statistics with Non-Gaussian Initial Data Distribution. Proceedings of the AMiTaNS’18: AIP Conference. Vol. 2025. (Bulgaria, Albena, June 20–25, 2018), Melville, New York: American Institute of Physics, pp. 040011-1-040011-12, DOI: 10.1063/1.5064895

Myrhorod, V., Hvozdeva, I., & Derenh, Y. (2019). Two-Dimensional Trend Analysis of Time Series of Complex Technical Objects Diagnostic Parameters. Proceedings of the AMiTaNS’19:11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences. Vol. 2164, №1. (Bulgaria, Albena, June 20–25, 2019), Melville, New York: American Institute of Physics, pp. 040011-1-040011-12, DOI: 10.1063/1.5130815

Veretenikova, I.V., & Lemeshko, Б. (2016). Criteria of Test against Absence of Trend in Dispersion Characteristics. Proceedings of the IFOST 2016: The 11th International Forum on Strategic Technology. (Rossia, Novosibirsk, June 1-3, 2016), Novosibirsk: Novosibirsk State Technical University, pp. 333-337.

Korn, G. A., & Korn, T. M. (2000). Mathematical Handbook. Mineola, New York.

Wald, A., & Wolfowitz, J. (1946). An Exact Test for Randomness in the Non-Parametric Case Based on Serial Correlation. AMS. 14, 378-388.

Bartels, R. (1982). The Rank Version of von Neumann’s Ratio Test for Randomness. Journal of the American Statistical Association. 77, 377, 40-46.

Himmelblau, D. M. (1970). Process Analysis by Statistical Methods. New York: John Wiley and Sons, Inc.

Published

2020-09-06 — Updated on 2020-09-07

Versions

How to Cite

Миргород , В. Ф., & Гвоздева , И. М. (2020). ОЦІНКА ПОТУЖНОСТІ ДЕЯКИХ НЕПАРАМЕТРИЧНИХ КРИТЕРІЇВ ТРЕНДУ. APPLIED QUESTIONS OF MATHEMATICAL MODELLING, 3(2.1), 184-196. https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.17 (Original work published September 6, 2020)