OPTIMAL DESIGN OF EDDY CURRENT PROBES AND METHODS OF ANALYSIS SOLUTIONS OF NONLINEAR INVERSE PROBLEMS
DOI:
https://doi.org/10.32782/KNTU2618-0340/2020.3.2-2.8Keywords:
optimal synthesis, eddy current probe, eddy current density, inverse problem, nonlinear ill-posed problems, regularization methods, surrogate optimization, metamodel, stochastic metaheuristic optimization algorithmAbstract
The implementation of a priori specified characteristics of eddy current probes involves the use of procedures for the optimal synthesis of their structures, in particular, excitation systems at the design stage. The formulation of the optimal design problem of a probe with a predetermined sensitivity characteristic, as an incorrectly posed inverse nonlinear from a mathematical point of view of the problem, is considered. A review and a corresponding analysis of the mathematical methods used to solve problems of this class are carried out, namely, the introduction of the desired solution into the set of correctness regularized using the Tikhonov functional, iterative regularization methods created by the unified scheme of pointwise approximation of the inverse operator, optimization method. The advantages and disadvantages of these methods are indicated. The following features that must be considered when choosing an optimization method are considered: multi-extreme task; the need to search for a global extremum; the complexity of the search hypersurface topology; the presence of restrictions whose introduction into the objective function complicates the topology of the search surface; significant non-linearity and possible non-differentiability of the target function; an algorithmic or complex analytical representation of the objective function. With this in mind, the optimization method for solving the nonlinear inverse problem of designing an eddy current probe excitation system using the modern metaheuristic stochastic global extremum search algorithm was chosen. This algorithm is based on a low-level hybridization of particle swarm optimization methods and the genetic algorithm and provides the evolutionary formation of the swarm composition. The study proved the feasibility of using surrogate optimization to solve the formulated problem in order to reduce the resource consumption of optimization algorithms in calculations using complex objective functions. Effective approximation techniques for constructing metamodels that are necessary for the practical implementation of surrogate optimization are indicated.
References
Halchenko, V. Ya., Trembovetskaya, R. V., & Tychkov, V. V. (2020). Surface Eddy Current Probes: Excitation Systems of the Optimal Electromagnetic Field (Review). Devices and Methods of Measurements. 1 (11). 42–52.
Gal’chenko, V. Ya., & Vorob’ev, M. A. (2005). Structural Synthesis of Attachable Eddy-Current Probes with a Given Distribution of the Probing Field in the Test Zone. Russian Journal of Nondestructive Testing. 1 (41). 29–33.
Halchenko, V. Ya., Pavlov, O. K., & Vorobyov M. O. (2002). Nonlinear Synthesis of Excitation Magnetic Fields of Eddy Current Converters of Flaw Detectors. Methods and Devices of Quality Control. 8. 3–5.
Norenkov, I. P. (2002). Osnovy avtomaticheskogo proektirovanija. Moskva: Izd-vo MGTU im. Baumana.
Norenkov, I. P. (2000). Avtomatizirovannoe proektirovanie. Uchebnik. Serija: Informatika v tehnicheskom universitete. Moskva: Izd-vo MGTU im. N.Je. Baumana.
Li, K. (2006). Osnovy SAPR (CAD/CAV/CAE). Sankt-Peterburg: Piter.
Korjachko, V. P., Kurejgin, V. M., & Norenkov, I. P. (1987). Teoreticheskie osnovy SAPR. Moskva: Jenergoatomizdat.
Andronov, S. A. (2001). Metody optimal'nogo proektirovanija. Sankt-Peterburg: SPbGUAP.
Avetisjan, D. A. (2005). Avtomatizacija proektirovanija jelektrotehnicheskih sistem i ustrojstv. Moskva: Vysshaja shkola.
Svirshheva, Je. A. (1998). Strukturnyj sintez neizomorfnyh sistem s odnorodnymi komponentami. Har'kov: HTURE.
Chernoruckij, I. G. (1987). Optimal'nyj parametricheskij sintez. Leningrad: Jenergoatomizdat.
Tihonov, A. N., & Arsenin, V. Ja. (1986). Metody reshenija nekorrektnyh zadach. Moskva: Nauka.
Tihonov, A. N., Goncharskij, A., Stepanov, B. B., & Jagola, A. G. (1990). Chislennye metody reshenija nekorrektnyh zadach. Moskva: Nauka.
Ohrіmenko, M. G., Fartushnij, І. D., & Kulik, A. B. (2014). Nekorektno postavlenі zadachі ta metodi їh rozv’jazuvannja. Kiїv: NTUU «KPІ».
Kabanihin, S. I. (2008). Obratnye i nekorrektnye zadachi. Novosibirsk: Sibirskoe nauchnoe izdatel'stvo.
Jagola, A. G., Stepanova, I. E., & Titarenko, V. N. (2014). Obratnye zadachi i metody ih reshenija. Prilozhenija k geofizike. Moskva: BINOM. Lab. znanij.
Petrov, Ju. P., & Sizikov, V. S. (2003). Korrektnye, nekorrektnye i promezhutochnye zadachi s prilozhenijami. Sankt-Peterburg: Politehnika.
Vasin, V.V., & Ageev, A.L. (1993). Nekorrektnye zadachi s apriornoj informaciej. Ekaterinburg: Nauka.
Sumin, M. I. (2009). Nekorrektnye zadachi i metody ih reshenija. Nizhnij Novgorod: NGU.
Tihonov, A. N., Leonov, A. S., & Jagola, A. G. (1995). Nelinejnye nekorrektnye zadachi. Moskva: Nauka.
Qi-Nian, J., & Zong-Yi, H. (1997). On the Choice of the Regularization Parameter for Ordinary and Iterated Tikhonov Regularization of Nonlinear Ill-Posed Problems. Inverse Problems. 13. 815–827.
Tanana, V. P., & Bokov, A. V. (2003). Reguljarizacija nelinejnyh operatornyh uravnenij. Izvestija Cheljabinskogo nauchnogo centra. 1 (18). 6-8.
Liu, F., & Nashed M. Z. (1997). Tikhonov Regularization of Nonlinear Ill-Posed Problems with Closed Operators in Hilbert Scales. Journal of Inverse and Ill-posed Problems. 4 (5). 363-376.
Alifanov, O. M., Artjuhin, E. A., & Rumjancev, S. V. (1988). Jekstremal'nye metody reshenija nekorrektnyh zadach. Moskva: Nauka.
Bakushinskij, A. B., & Goncharskij, A. B. (1989). Nekorrektnye zadachi. Chislennye metody i prilozhenija. Moskva: MGU.
Engl, H. W., Hanke, M., & Neubaue A. (1996). Regularization of Inverse Problems. Dordrecht: Kluwer Academic Publishers
Kaltenbacher, B., Neubauer, A., & Schertzer, O. (2008). Iterative Regularization Methods for Nonlinear Ill-posed Problems. Berlin, New York: Walter de Gruyter & Co.
Kaipio, J., & Somersalo E. (2004). Statistical and Computational Inverse Problems. New York: Springer Verlag.
Samarskij, A. A., & Vabishhevich, P. N. (2009). Chislennye metody reshenija obratnyh zadach matematicheskoj fiziki. Moskva: LKI.
Zhdanov, M. S. (2007). Teorija obratnyh zadach i reguljarizacii v geofizike. Moskva: Nauchnyj mir.
Halchenko, V. Ya., & Jakimov, A. N. (2015). Populjacionnye metajevristicheskie algoritmy optimizacii roem chastic: Uchebnoe posobie. Cherkassy: FLP Tretjakov A.N.
Skobcov, Ju. A., & Fedorov, E. E. (2013). Metajevristiki: monografija. Doneck: Noulidzh.
Jiang, P., Zhou, Q., & Shao X. (2020). Surrogate Model-Based Engineering Design and Optimization. Springer (Springer Tracts in Mechanical Engineering).
Trembovetska, R. V., Halchenko, V. Ya., & Tychkov, V. V. (2018). Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems. Eastern-European Journal of Enterprise Technologies. 5/5 (95). 39-46.
Halchenko, V. Ya., Trembovetska, R. V., & Tychkov, V. V. (2018). Nejromerezheva metamodel' cilіndrichnogo nakladnogo vihrostrumovogo peretvorjuvacha jak skladova surogatnogo optimal'nogo sintezu. Vіsnik Hersons'kogo nacіonal'nogo tehnіchnogo unіversitetu. 3/1 (66). 32–38.
Trembovetska, R. V., Halchenko, V. Y., & Tychkov, V. V. (2019). Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system. International Scientific Journal «Mathematical Modeling». 4 (3). 113-116.
Halchenko, V. Ya., Yakimov, A. N., & Ostapushchenko D. L. (2010). Poisk global'nogo optimuma funkcij s ispol'zovaniem gibrida mul'tiagentnoj roevoj optimizacii s jevoljucionnym formirovaniem sostava populjacii. Informacionnye tehnologii. 10. 9–16.