SIMULATION OF OXYGEN STEAM JET CONDENSATION IN LIQUID OXYGEN

Authors

DOI:

https://doi.org/10.32782/KNTU2618-0340/2020.3.2-2.14

Keywords:

condensation, gaseous oxygen stream, liquid oxygen flow, length of the condensation region, phase transition criterion, oxygen gas velocity, liquid oxygen velocity, generalization of experimental data, regression analysis

Abstract

The results of numerical calculations of the length of the condensation region of a gaseous oxygen jet in a liquid oxygen flow are presented.

Condensation of superheated steam jet of a low-temperature substances has its own characteristics in comparison with condensation of a water vapor jet. When modeling flows of various substances, the following dimensionless parameters and criteria can be used: density ratio of liquid and vapor, velocity ratio liquid to vapor, and the phase transition criterion. The oxygen gas temperature can be significantly higher than the saturation temperature, which leads to different condensation conditions.

Experimental data with visualization of the condensation process of a stream of gaseous oxygen in a stream of liquid oxygen, namely, photographs are used. In the photographs, the condensation area is predominantly in the shape of a torch; in the early studies of jet condensation of water vapor in water, the jet was shaped like a cone.

As a result of generalization of the experimental data, a formula was obtained for determining the length of the condensation region. As a result of applying the methods of nonlinear regression analysis, the values of the parameters for the function, which are used to determine the length of the condensation region of gaseous oxygen in the flow of liquid oxygen, have been refined. We calculated the standard deviations of the experimental data from the theoretical data, which were obtained on the basis of an analytical dependence with two sets of parameter values: new and proposed in [2]. Comparative analysis of the accuracy of the constructed approximating functions is carried out. New function is more accurate and can be used for mathematical modeling of the dynamics of the pumping system of a liquid propellant rocket engine.

References

Pilipenko, O. V., Prokopchuk ,A. A., Dolgopolov, S. I., Pisarenko, V. Yu., Kovalenko, V. N., Nikolaev, A. D., & Horyak, N. V. (2017). Osobennosti matematicheskogo modelirovaniya nizkochastotnoy dinamiki marshevogo ZhRD s dozhiganiem generatornogo gaza pri zapuske. Kosmichna nauka i tehnologIya. 23, 5, 3–12. DOI: 10.15407/knit2017.05.003.

Pilipenko, V. V., Dorosh, N. L., & Manko, I. K. (1993). Eksperimentalnoe issledovanie kondensatsii para pri vduve strui gazoobraznogo kisloroda v potok zhidkogo kisloroda. Tehnicheskaya mehanika. 2, 77-80.

Glikman, B. F. (1957). O kondensatsii strui para v prostranstve, zapolnennom zhidkostyu. Izvestia AN SSSR. 2, 43-49.

Nakoryakov, V. E., & Safarova, N. S. (1975). Prostaya formula dlya opredeleniya polozheniya poverhnosti razdela faz pri kondensatsii zatoplennoy strui para. Izvestia SO AN SSSR. Seria tehn.nauk. 8, 2, 69-71.

Kudo, A., Eguso, T., & Toda, S. (1974). Basic Study on Vapor Suppression. Proceedings of the 5th International Heat Transfer Conference. Vol. 3. (Тоkуо, 1974), pp. 221-225.

Isachenko, V. N., Osipova, V. A., & Sukomel, A. S. (1981). Teploperedacha. M.: Energoizdat.

Akulichev, V. L., Alekseev, V. N., & Bulanov, V. A. (1988). Periodicheskie fazovyie prevrascheniya v zhidkostyah. M.: Nauka

Kutateladze, S. S., & Nakoryakov, V. E. (1984). Teplomassoobmen i volnyi v gazozhidkostnyih sistemah. Novosibirsk. Nauka, Sib. Otdelenie ANSSSR.

Sigel, E. (2008). Prakticheskaya biznes-statistika.: Per. s angl. M.: Izdatelskiy dom «Vilyams».

Pilipenko, O. V., Dolgopolov, S. I., NIkolaev, O. D., & Horyak, N. V. (2020). Matematicheskoe modelirovanie zapuska mnogodvigatelnoy zhidkostnoy raketnoy dvigatelnoy ustanovki. Tehnichna mehanIka. 1, 5-18. DOI: 10.15407/itm2020.01.005.

Published

2020-10-06

How to Cite

DOROSH, N. . (2020). SIMULATION OF OXYGEN STEAM JET CONDENSATION IN LIQUID OXYGEN. APPLIED QUESTIONS OF MATHEMATICAL MODELLING, 3(2.2), 149-155. https://doi.org/10.32782/KNTU2618-0340/2020.3.2-2.14