MODELING OF FILTRATION MASS TRANSFER IN THE MEDIUM OF MICROPOROUS PARTICLES
DOI:
https://doi.org/10.32782/KNTU2618-0340/2021.4.2.1.9Аннотация
Filtration mass transfer processes are important technological operations in the separation of mixtures, extraction of liquids from various biological materials in the processing, chemical industry, pharmacology and other fields. The structure of biological materials contains an extensive system of moisture-containing cells, intercellular cavities, micropores, through which mass transfer takes place. The internal mass flows are directed from the middle of the micropores of moisture-containing particles to their surfaces. Next, intermediate (transit) flows are formed, directed from the outer surfaces of the particles into the macropores of the interparticle space. In macropores of intraparticle spaces there are external outflows of liquid on the outer layer of the medium. During filtration transfer-impression in the pre-formed layer of microporous particles of biological nature, which is subjected to compression, there are internal and external pressure gradients in the particles and interparticle space, respectively, which cause outflow of liquid from the layer and particles .. This model is based on intraparticle spaces, including extraparticle spaces. According to this model, the fluid flow from the micropores of the intraparticle spaces is considered to be insignificant compared to the flow from the particles to the outside - to the macropores of the extraparticle spaces and the flow from the extraparticle spaces to the outside layer of the medium. In addition, this model includes assumptions about the pseudo-static flow between intraparticle spaces and extraparticle spaces. This means that the intensity of the flow - from the middle of the particle to the outside, is proportional to the pressure difference inside and outside the particle, which is very close.
The Laplace and Fourier integral transformation methods are used to construct a high-velocity exact analytical solution of the boundary value problem of filtration mass transfer, which includes two interconnected types of transfer: at the microlevel in micromoisture-containing particles By solving the inverse problem using experimental concentration distributions in the Microsoft Visual C ++ system, the profiles of the reduced consolidation coefficients for particles and the macropores system were calculated and the model was checked for adequacy.
Процеси фільтраційного масопереносу є важливими технологічними операціями при розділенні сумішей, екстраґуванні рідин із різних біологічних матеріалів в переробній, хімічній індустрії, фармакології та інших галузях. Структура біологічних матеріалів містить розгалужену систему вологовмістких клітин, міжклітинних полостей, мікропор, через які здійснюється масоперенос. При цьому внутрішні потоки маси спрямовані з середини мікропор вологовмістких частинок до їх поверхонь. Далі формуються проміжні (транзитні) потоки, спрямовані від зовнішніх поверхонь частинок в макропори міжчастинкового простору. В макропорах (intraparticle spaces) виникають зовнішні відтоки рідини на зовні пласту середовища. При фільтраційному переносі-відтиску у попередньо сформованому пласті мікропористих частинок біологічної природи, що піддається стискуванню, виникають внутрішні і зовнішні ґрадієнти тисків відповідно в частинках і міжчастинковому просторі, які спричинюють відтоки рідини із пласту і частинок.. Ця модель ґрунтується на відповідних рівняннях балансу маси у внутрічастинковому просторі (intraparticle spaces), включаючи міжчастинковий просторі (extraparticle spaces). Згідно такої моделі, потік рідини з мікропор intraparticle spaces розглядається як такий що є незначним у порівнянні з потоком з частинок на зовні – в макропори extraparticle spaces та потоком з extraparticle spaces назовні пласту середовища. До того ж, розглядувана модель включає припущення про псевдо статичність потоку між intraparticle spaces і extraparticle spaces. Це означає, що інтенсивність потоку – з середини частинки назовні, є пропорційною різниці тисків всередині і назовні частинки, що є дуже наближено. Методами інтеґральних перетворень Лапласа і Фур'є побудований високошвидкісний точний аналітичний розв’язок крайової задачі фільтраційного масопереносу, що включає два взаємозв’язаних типи переносу: на мікрорівні – в мікропорах вологовмістких частинок, та макрорівні – в системі макропор міжчастинкового простору в обмеженому середовищі мікропористих частинок. Шляхом розв’язання оберненої задачі з використанням експериментальних концентраційних розподілів в системі, розробленій засобами Microsoft Visual C++ розраховані профілі приведених коефіцієнтів консолідації для частинок та системи макропор і виконана перевірка моделі на адекватність.Библиографические ссылки
Haubenberger, D., Kalowitz, D., Nahab, F. B, Toro, C., Ippolito, D., Luckenbaugh, D. A., Wittevrongel, L., & Hallett, M. (2011). Validation of Digital Spiral Analysis as Outcome Parameter for Clinical Trials in Essential Tremor. Movement Disorders. 26, 11, 2073−2080.
Wang, J.-S., & Chuang, F.-C. (2012). An Accelerometer-Based Digital Pen with a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition. IEEE Transactions on Industrial Electronics. 59, 7, 2998−3007. DOI: 10.1109/TIE.2011.2167895.
Leniuk, M. P ., & Petryk, M. R. (2000). Metody intnhralnykh peretvoren Furie-Besseliav zadachakh matematychnoho modeliuvannia masoperenosu v neodnoridnykh seredovyshchakh. Kyiv: Naukova dumka.
Wang, J.-S., & Chuang, F.-C. (2012). An Accelerometer-Based Digital Pen with a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition. IEEE Transactions on Industrial Electronics. 59, 7, 2998−3007.DOI: 10.1109/TIE.2011.2167895.
Lanoiselle, J.-L., Vorobyov, E. (Vorobiev), & Bouvier, J.-M. (1994). Modélisation du Pressage à Pression Constant. Cas de Produits à Structure Cellulaire, Entropie, 30(186), 39−50.
Petryk, M., Leclerc, S., Canet, D., & Fraissard, J. (2008). Modeling of gas transport in a microporous solid using a sclice selection procedure: Application to the diffusion of benzene in ZSM5. Catalysis Today. Elsevier B.V. 139, 3, 234−240.
Petryk, M., & Vorobiev, E. (2007). Liquid Flowing from Porous particles During the Pressing of Biological Materials. Computer and Chemical Engineering. 31, 10, 1336−1345.
Petryk, M., Leclerc, S., Canet, D., Sergienko, I., Deineka V., & Fraissard, J. (2015). Competitive Diffusion of Gases in a Zeolite Bed: NMR and Slice Selection Procedure, Modelling and Parameter Identification.. The Journal of Physical Chemistry C. ACS (USA). 119, 47, 26519–26525.
Mykhalyk, D., Mudryk, I., Hoi, A., & Petryk, M. (2019). Modern Hardware and Software Solution for Identification of Abnormal Neurological Movements of Patients with Essential Tremor. Proceeding of the9th International Conference on Advanced Computer Information Technologies ( Czech Republic, Budejovice, June 5-7, 2019), pp. 183−186