НАПРУЖЕНО-ДЕФОРМОВАНИЙ СТАН ШАРУВАТОЇ ОСНОВИ З ПІДКРІПЛЮЮЧИМ ЕЛЕМЕНТОМ

Автор(и)

DOI:

https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.10

Ключові слова:

асимптотичний метод, контактна задача, в´язкопружне тіло, композиційні матеріали, стрингер, ортотропні шари, циліндрична анізотропія

Анотація

Керування напружено-деформованим станом в’язкопружних тіл із циліндричною анізотропією, що складаються з багатьох шарів та армовані є дуже важливим на практиці, зокрема, у будівництві. Розв’язання задач механіки анкерних стрижнів та фундаментів на палях на сьогодні залишається дуже актуальним. Результати також можуть бути корисними при аналізі напружено-деформованого стану волокнистого композиту. У роботі розглядається складна просторова осесиметрична контактна задача про передачу навантаження від стержня кругового поперечного перерізу до в'язко-пружного тіла, що складається з двох скріплених між собою ортотропних шарів з циліндричною анізотропією. Визначається закон розподілу контактних напружень між стрингером та тілом, а також зусилля в стрингері при умові його навантаження в кінцевих точках поздовжніми  силами. Для розв’язання використовується розроблений авторами асимптотичний метод. У якості малого параметра обирається відношення жорсткісних характеристик матеріалу. Оскільки матеріал тіла в’язкопружний, цей фізичний параметр включає в себе відношення функцій, що виникають після застосування перетворення Лапласу в основних рівняннях і залежать від параметру цього перетворення. Такі відношення для в’язкопружних анізотропних матеріалів, що зазвичай розглядаються на практиці, не перевищують одиницю і тому параметр асимптотичного інтегрування лишається малим. Такий вибір малого параметру є зручним, оскільки вигляд рівнянь та крайових умов, записаних відносно трансформант Лапласа, повністю співпадає з відповідними виразами для пружної постановки задачі. Після розв’язання задачі в такому вигляді, лишається питання переходу до оригіналів шуканих функцій. Такий перехід можна спростити, якщо знаходити оригінали для малих та великих значень обраних параметрів (наприклад, часу), а потім з’єднати їх за допомогою двоточкової апроксимації, що дозволяє отримати загальний розв’язок.

 

The control of the stress-strain state of viscoelastic bodies with cylindrical anisotropy, which consist of numerous layers and are supported, is very important in practice, particularly in construction. The mechanics of anchor rods and pile foundations remains very important today. The results can also be useful for stress-strain analyses of fibrous composites. The paper deals with a complex spatial axisymmetric contact problem of transferring a load from a circular cross section rod to a viscoelastic body, which consists of two bonded orthotropic layers with cylindrical anisotropy. The law of the contact stress distribution between the stringer and the body, as well as the force in the stringer if it is loaded longitudinally at the end points, is determined. For a decision the asymptotic method worked out by authors is used. The relation of stiff descriptions of material gets out as a small parameter. As material of body вязкоупругий, this physical parameter is plugged in itself by the relation of functions that arise up after application of transformation of Laplace in basic equalizations and depend on the parameter of this transformation. Such relations for viscoelastic anisotropic materials that mostly meet in practice do not exceed unit and parameter of asymptotic integration remains small. Such choice of small parameter is comfortable, as a type of equalizations and border terms, writtenin in relation to the transforms of Laplace, fully coincides with corresponding expressions for the resilient raising of task. After the decision of task in such kind the question of passing a stay to the originals of the sought after functions. Such transition can be simplified, if to find originals for the small and large values of the chosen parameters (for example, to time), and then to join them by means of  two-point approximation, that allows to get a common decision.

Посилання

Гузь А. Н., Бабич С. Ю., Рудницкий В. Б. Контактное взаимодействие упругих тел с начальными (остаточными) напряжениями. Развитие идей Л. А. Галина в механике: монографія. Москва; Ижевск: Изд-во Ин-та компьютерных исследований, 2013. 480 с.

Приварников А. К., Спиця О. Г. Осесиметричні контактні задачі для пружних багатошарових плит. Вісник Донецького університету. Серія А. Природничі науки. 2005. Вип. 1. С. 53–57.

Калоеров С. А., Самодуров А. А. Задача электровязкоупругости для многосвязных пластинок. Математичні методи та фізико-механічні поля. 2014. Т. 57. № 3. С. 62–77.

Кагадий Т. С. Метод возмущений в механике упругих (вязкоупругих) анизотропных и композиционных материалов: монографія. Днепропетровск: РИК НГА України, 1998. 260 с.

Кагадій Т. С., Білова О. В., Щербина І. В. Застосування методу малого параметру при моделюванні задач теорії в´язкопружності. Вісник Херсонського національного університету. 2019. 2(69). Ч.3. С. 69−76.

Кагадий Т. С. Передача нагрузки двуслойным телам конечных размеров. Вiсник Днiпропетровського унiверситету. Серія: Механiка. 2000. Т. 2 . Вип. 3. С. 38-46.

Guz, A. N., Babich, S. Yu., & Rudnitskiy, V. B. (2013). Kontaktnoe vzaimodeystvie uprugih tel s nachalnyimi (ostatochnyimi) napryazheniyami. Razvitie idey L. A. Galina v mehanike: monografIya. Moskva; Izhevsk: Izd-vo In-ta kompyuternyih issledovaniy.

Pryvarnykov, A. K., & Spytsia, O. H. (2005). Osesymetrychni kontaktni zadachi dlia pruzhnykh bahatosharovykh plyt. Visnyk Donetskoho universytetu. Seriia A. Pryrodnychi nauky. 1, 53–57.

Kaloerov, S. A., & Samodurov, A. A. (2014). Zadacha elektrovyazkouprugosti dlya mnogosvyaznyih plastinok. Matematichni metodi ta fIziko-mehanichni polya. 57, 3, 62–77.

Kagadiy, T. S. (1998). Metod vozmuscheniy v mehanike uprugih (vyazkouprugih) anizotropnyih i kompozitsionnyih materialov: monografiya. Dnepropetrovsk: RIK NGA Ukrayini.

Kahadii, T. S., Bilova, O. V., & Shcherbyna, I. V. (2019). Zastosuvannia metodu maloho parametru pry modeliuvanni zadach teorii v´iazkopruzhnosti. Visnyk Khersonskoho natsionalnoho universytetu. 2(69), Part 3, 69–76.

Kagadiy, T. S. (2000). Peredacha nagruzki dvusloynyim telam konechnyih razmerov. Visnik Dnipropetrovskogo universitetu. Mehanika. 2, 3, 38-46.

##submission.downloads##

Опубліковано

2020-09-06 — Оновлено 2020-09-07

Версії

Як цитувати

Кагадій , Т. С., Шпорта , А. Г. ., Білова , О. В., & Щербина , І. В. (2020). НАПРУЖЕНО-ДЕФОРМОВАНИЙ СТАН ШАРУВАТОЇ ОСНОВИ З ПІДКРІПЛЮЮЧИМ ЕЛЕМЕНТОМ. APPLIED QUESTIONS OF MATHEMATICAL MODELLING, 3(2.1), 107-116. https://doi.org/10.32782/KNTU2618-0340/2020.3.2-1.10 (Original work published 06, Вересень 2020)