MULTI-MODE MODEL IDENTIFICATION OF HELICOPTERS AIRCRAFT ENGINES IN FLIGHT MODES USING A MODIFIED GRADIENT ALGORITHM FOR TRAINING RADIAL-BASIC NEURAL NETWORKS
Keywords:
neural network, radial-basis function, modified gradient training algorithm, identificationAbstract
This work is devoted to solving the applied problem of identification helicopters aircraft gas turbine engines in flight modes using their multi-mode models using the classical method – least squares method and the neural network method – by constructing a neural network in accordance with the initial data. The following methods are used: methods of probability theory and mathematical statistics, methods of neuroinformatics, methods of information systems theory and data processing. To achieve this goal and reduce the identification error of aircraft gas turbine engine multi-mode model, the use of radial-basis functions neural network with a modified gradient training algorithm is proposed, which consists in dynamically changing the structure of the neural network in the learning process, and to exclude situations when the parameters of the elements are close to each other. to a friend, the coefficient of mutual intersection of elements is introduced. When solving the applied problem of identification helicopters aircraft gas turbine engines, it was shown that the error in identifying a multi-mode model of helicopters aircraft gas turbine (using the example of the TV3-117 aircraft engine) using a perceptron when calculating individual engine parameters did not exceed 0.63 %; for radial-basis functions neural network – 0.74 %, for radial-basis functions neural network with a modified gradient learning algorithm – 0.47 %, while for the classical method (least squares method) it is about 1% in the considered the range of change of engine operating modes. Comparative analysis of neural network and classical identification methods under noise action shows that neural network methods are more robust to external disturbances: for a noise level σ = 0.025, the error in identifying parameters of an aircraft engine TV3-117 when using a perceptron increases from 0.63 to 0.84%; for radial-basis functions neural network – from 0.74 to 0.86 %; for radial basis functions neural network with a modified gradient learning algorithm – from 0.47 to 0.65 %, and for the least squares method – from 0.99 to 2.14 %.
References
Жернаков C.B. Идентификация параметров ГТД гибридным ансамблем нейросетей. Нейроинформатика-2000 : Всероссийская научно-техническая конференция. 2000. С. 117–126.
Жернаков C. B. Хранение информационного портрета авиационного газотурбинного двигателя на базе нейросетей. Нейрокомпьютеры: разработка и применение. 2001. № 4–5, 2001. С. 44–51.
Tudosie A.-N. Aircraft Gas-Turbine Engine’s Control Based on the Fuel Injection Control. Aeronautics and Astronautics, Intech, Rijeka, Croatia, 2011. 2011. Pp. 305–331.
Жернаков С.В. Параметрическая идентификация ГТД гибридным ансамблем нейросетей. Нейрокомпьютеры : разработка и применение. 2001. № 4–5. С. 31–35.
Жернаков С.В. Распознавание параметров авиационного двигателя нейросетями. Автоматизация и современные технологии. 2003. № 4. С. 29–31.
Ren X., Chen J. A Modified Neural Network for Dynamical System Identification and Control. Proc. 14th World Congress of IFAC. 1999. Vol. 9. No. 5. Pp. 376–388.
Ntantis E. L. Diagnostic Methods for an Aircraft Engine Performance. Journal of Engineering Science and Technology. 2015. Vol. 8. No. 4. Pp. 64–72.
Stamatis A. G. Evaluation of gas path analysis methods for gas turbine diagnostics. Journal of Mechanical Science and Technology. 2011. Vol. 25. Issue 2. Pp. 469–477.
Gas turbine engines diagnosing using the methods of pattern recognition / S. Dmitriev, O. Popov, O. Yakushenko, V. Potapov, O. Pashchuk. Авиационно-космическая техника и технология. 2017. № 8. С. 115–120.
Владов С. І., Шмельова Т. Ф., Шмельов Ю. М. Контроль і діагностика технічного стану авіаційного двигуна ТВ3-117 у польотних режимах за допомогою нейромережевих технологій : Монографія. Кременчук : ПП Щербатих А. В., 2020. 200 с.
Onboard parameter identification method of the TV3-117 aircraft engine of the neural network technologies / Vladov S., Shmelov Yu., Kotliarov K., Hrybanova S., Husarova O., Derevyanko I., Chyzhova L. Transactions of Kremenchuk Mykhailo Ostrohradskyi National University. 2019. Issue 5/2019 (118). P. 90–96.
Васильев В. И., Жернаков С. В., Муслухов И. И. Бортовые алгоритмы контроля параметров ГТД на основе технологии нейронных сетей. Вестник УГАТУ. 2009. Т. 12. № 1 (30). С. 61–74.
Жернаков С. В. Идентификация характеристик газотурбинного двигателя на основе нейронных сетей. Приборы и системы. Управление. Контроль. Диагностика. 2006. № 11. C. 49–55.
Jianyu L., Siwei L., Yingjiana Q., Yapinga H. Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Networks. 2003. No. 5/6. Pp. 729–734.
Вичугов В. Н. Модифицированный градиентный алгоритм обучения радиально-базисных нейронных сетей. Известия Томского политехнического университета. 2009. Т. 315. № 5. С. 149–152.