USE OF NUMERICAL METHODOLOGY AND DECISION-MAKING THEORY IN THE PROCESS OF IT SPECIALIST TRAINING
Keywords:
professional training of future programmers, decision making, numerical methods,economic and mathematical modeling, modern information technologiesAbstract
The use of economic-mathematical models and optimization methods of decision-making is one of the effective ways to determine the socio-economic development of the economic system. Today, in modern realities, the formalization of development processes and the structure of the country as a complex dynamic system can be described only in the long run, given the factors of uncertainty and risk. To solve the problem of forecasting the socio-economic development of the country, taking into account the factors of influence and determining the resources of development is impossible without the use of information technology. Some experimental procedures require the development of individual algorithms using modern software. It is the use of tools of economic and mathematical modeling for decision-making in various fields of management on the basis of modern information technology that reduces the risk of calculation errors. In this regard, it is important for high-quality training of IT professionals to add conceptual foundations of the methodology of numerous methods and theory of decision-making, which includes a combination of professional basic knowledge with practical skills of modern software development. The article substantiates the relevance of students' development of such educational components as optimization methods for decision making, methods of solving the main problems of numerical analysis, software development for their implementation.
The practical results presented in the article are used to develop a theoretical course and guidelines in the following educational components: «Multiple Methods», «Decision Theory» for students majoring in 121 "Software Engineering".
References
Альфред В. Ахо Компиляторы. Принципы, технологии и инструментарий. М.: Вильямс, 2008. 689 c.
Арнольд К., Гослинг Д. Язык программирования Java. Пер. с англ. СПб.: Питер, 1997. 304 с.
Берд Б. Java для чайников. М.: Диалектика / Вильямс, 2013. 521 c.
Бережная Е.В. Математические методы моделирования экономических систем. 2-е изд. М.: Финансы и статистика, 2013. 432 с.
Богач І.В., Довгалець С.М., Дубовой В.М. Алгоритми розв’язання задач з програмування. Решебник. Вінниця: ВНТУ, 2017. 119 с.
Гарнаев А. WEB-программирование на Java и JavaScript. М.: Питер, 2017. 718 c.
Гонсалвес Э. Изучаем Java EE 7. М.: Питер, 2016. 640 c.
Гупта А. Java EE 7. Основы. М.: Вильямс, 2014. 336 c.
Савитч У. Язык Java. Курс программирования. М.: Вильямс, 2015. 928 c.
Схрейвер А. Теория линейного и целочисленного программирования: в 2-х томах./Пер. с английского. М.: Мир, 1991. 360 с.
Хабибуллин И. Самоучитель Java. М.: БХВ-Петербург, 2014. 768 c.
Эккель Б. Философия Java. М.: Питер, 2016. 809 c.
Экономико-математические методы и прикладные модели: Уч. Пособие для вузов/В.В. Федосеев, А. Н. Гармаш, Д. М. Дайитбеговидр. М.: ЮНИТИ, 2009. 391 с.
Элементы линейной алгебры и аналитической геометрии: расчетно-графическая работа/сост. Л.И. Поленищенко, Д.В. Айдаркин. Ульяновск: УВАУ ГА(И), 2013.