SIMULATION OF A PHOTOTHERMOELECTRIC CONVERTER OPERATION

Authors

Keywords:

photoelectric converter, thermoelectric generator, integrated photothermoelectric converter, simulation model, generated power, efficiency, concentration ratio

Abstract

The performance of photoelectric converters is limited by the temperature factor that causes a decrease of generated power and efficiency when the operating temperature rises. A number of approaches have been proposed to solve the heating problem, including integration with a thermoelectric generator. In such systems, thermal energy is utilized by a thermoelectric module to obtain additional electrical power, while the photovoltaic converter temperature decreases, leading to improve electrical generation. The variety of converter materials, designs, and operating conditions require investigation of the integrated photothermoelectric systems operating modes in each specific application.

In this paper, we consider a photothermoelectric converter based on mechanically connected single-crystal silicon photoelectric converter and Bi2Te3 low-temperature thermoelectric module that are widely presented on the power equipment market. A simulation model of such converter has been created in the Matlab/Simulink software environment to study the influence of operating conditions on energy performance and temperature operating conditions of integrated photothermoelectric converter.

Based on photovoltaic converter critical operating temperature the integrated converter external operating conditions, in particular, the expedient range of solar radiation flux concentration ratio, were determined by modeling. The photovoltaic and thermoelectric contribution to the whole power of the hybrid photothermoelectric converter was estimated, and the corresponding converters efficiencies were determined. It is shown, that the energy gain from the photoelectric and thermoelectric converters integration is observed at solar radiation concentration ratio above 16 and allows increasing the power of a photothermoelectric converter by 1.6 times compared to only photoelectric convertor operating in similar irradiance conditions. Based on the analysis of obtained data, the ways to increase the integrated photothermoelectric converter efficiency are proposed.

Author Biographies

O.V. ANDRONOVA, Kherson National Technical University

к.т.н., доц. кафедри енергетики, електротехніки і фізики

V.V. KURAK, Kherson National Technical University

к.т.н., доц. кафедри енергетики, електротехніки і фізики

S.S. GRIGORENKO, Kherson National Technical University

студент 3 курсу спец. 141 Електроенергетика, електротехніка та електромеханіка

References

Lorenzi B. Practical development of efficient thermoelectric – photovoltaic hybrid systems based on wide-gap solar cells / B. Lorenzi, P. Mariani, A. Reale, A. Di Carlo, G. Chen, D. Narducci // Applied Energy. – 2021. – № 300. – 117343-10 р. doi: 10.1016/j.apenergy.2021.117343

Dupré O. Thermal Behavior of Photovoltaic Devices / O. Dupré. – Springer International Publishing AG. – 2017. – 103 р. doi:10.1007/978-3-319-49457-9

Li G. A review of solar photovoltaic-thermoelectric hybrid system for electricity generation / Li G., S. Shittu, T.M.O. Diallo, M. Yu, X. Zhao, J. Ji // Energy. – 2018. – №158. – Р. 41-58. doi:10.1016/j.energy.2018.06.

Zulakmal M.Y. Solar photovoltaic/thermal-thermoelectric generator performance review / M.Y. Zulakmal, A. Fudholi, N.S. Rukman, S. Mat, H.Y. Chan, K. Sopian // IOP Conf. Series: Earth and Environmental Science. – 2019. – 012120-11 р. doi:10.1088/1755-1315/268/1/012120

Vorobiev Yu. Thermal-photovoltaic solar hybrid system for efficient solar energy conversion / Yu. Vorobiev, J. Gonza´lez-Herna´ndez, P. Vorobiev, L. Bulat // Solar Energy. – 2006. - № 80. – Р. 170–176. doi:10.1016/j.solener.2005.04.022

Kraemer D. Photovoltaic-thermoelectric hybrid systems: A general optimization methodology / D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, M. Chiesa // Applied Physics Letters. – 2008. – Vol. 92, Issue 24. – 243503-3 р. doi:10.1063/1.2947591

Beeri O. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling O. Beeri, O. Rotem, E. Hazan, E.A. Katz, A. Braun, Y. Gelbstein // Journal of Applied Physics. – 2015. - № 118. – 115104-8 р. doi:10.1063/1.4931428

Zhang J. Enhanced performance of photovoltaic–thermoelectric coupling devices with thermal interface materials / J. Zhang, H. Zhai, Z. Wu, Y. Wang, H. Xie, M. Zhang // Energy Reports. – 2020. - № 6. – Р. 116–122. doi:10.1016/j.egyr.2019.12.001

Lorenzi B. Theoretical efficiency of hybrid solar thermoelectric-photovoltaic generators / B. Lorenzi, G. Chen // Journal of Applied Physics. – 2018. - № 124. – 024501-11 р. doi:10.1063/1.5022569

Xu X. Performance Analysis of a Combination System of Concentrating Photovoltaic / Thermal Collector and Thermoelectric Generators / X. Xu, S. Zhou, M.M. Meyers, B.G. Sammakia, B.T. Murray // Journal of Electronic Packaging. – 2014. – Vol. 136, Issue 4. – 041004-7 р. doi:10.1115/1.4028060

Lamba R. Solar driven concentrated photovoltaic-thermoelectric hybrid system: Numerical analysis and optimization / R. Lamba, S.C. Kaushik // Energy Conversion and Management. – 2018. – № 170. – Р. 34–49. doi:10.1016/j.enconman.2018.05.048

Yin E. Optimal design method for concentrating photovoltaic-thermoelectric hybrid system / E. Yin, Q. Li, Y.Xuan // Applied Energy. – 2018. - № 226. – Р. 320–329. doi:10.1016/j.apenergy.2018.05.127

Verma V. Complementary performance enhancement of PV energy system through thermoelectric generation / V. Verma, A. Kane, B. Singh // Renewable and Sustainable Energy Reviews. – 2016. – № 58. – Р. 1017–1026. doi:10.1016/j.rser.2015.12.212

Duffie J.A. Solar Engineering of Thermal Processes / J.A. Duffie, W.A. Beckman. – John Wiley & Sons, Inc., 2013. – 910 p.

Андреев В.М. Фотоэлектрическое преобразование концентрированного солнечного излучения / В.М. Андреев, В.А. Грилихес, В.Д. Румянцев. – Л.: Наука, 1989. – 310 с.

Колтун М.М. Солнечные элементы / М.М. Колтун. – М.: Наука, 1987. - 192 с.

https://doi.org/10.35546/kntu2078-4481.2022.1.

Published

2022-04-08