RESEARCH OF MODELS OF EFFICIENCY OF ENERGY PRODUCTION BY SOLAR PHOTOELEMENTS IN THE LANGUAGES OF ADAPTIVE POSITIONING

Authors

Keywords:

simulation, solar panels, power generation, adaptive positioning, tracker

Abstract

The paper considers one of the problems of solar power plants, namely, a decrease in the volume of energy generation due to a change in the angle of incidence of the sun's rays. The larger the angle, the less power generation. To increase the amount of energy produced, tracking systems of solar stations are used. Due to the positioning mechanisms of photocells relative to the position of the sun in the sky, it is possible to maintain a fixed angle of incidence of sunlight on the panel. This positioning allows you to maintain maximum power generation during daylight hours.

To compare positioning methods, a study was made of power generation by simulating panel operation under different conditions. Three main models have been formed: solar panels without adaptive positioning, solar panels with uniaxial positioning, and solar panels with biaxial positioning. To evaluate the effectiveness of each method, criteria were selected for comparison: the amount of energy generated and the energy consumption of the adaptive positioning system.

The resulting models took into account the costs of maintaining adaptive positioning systems. As a result, when using panels with single axis positioning, energy production increases by 22.1% during the year. If a two-axis adaptive positioning system is used, then the increase in energy production will be 24.2% compared to a single-axis positioning system.

The model data were compared for each month of the year. During the summer months, the energy yield of solar panels with dual axis positioning is reduced relative to other solar panel positioning methods. The reason is the increase in temperature from direct sunlight, which reduces the efficiency of work. But in other months of the year, the biaxial positioning system performs better, which offsets the performance in the summer. Especially in winter, when a lot of energy is spent on heating.

Author Biographies

T.E. ANDRUSHKO, Kherson National Technical University

студентка групи 6КСМ кафедри інформаційних технологій Херсонського національного технічного університету

E.A. DROZDOVA, Kherson National Technical University

старший викладач кафедри інформаційних технологій Херсонського національного технічного університету

V.M. KOZEL, Kherson National Technical University

к.т.н., доцент кафедри інформаційних технологій Херсонського національного технічного університету

O.V. IVANCHUK , Kherson National Technical University

аспірант першого курсу кафедри інформаційних технологій Херсонського національного технічного університету

References

Renewable capacity statistics 2021. International Renewable Energy Agency (IRENA). Abu Dhabi. 2021. URL: https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021. (дата звернення: 02.02.22).

Difference Solar Radiation and Solar Insolation explained. URL: https://sinovoltaics.com/learning-center/basics/solar-radiation-solar-insolation/ (дата звернення: 02.02.22).

Global Techno-Economic Performance of Bifacial and Tracking Photovoltaic Systems. Carlos D. and another. Joule, 2020. №4. С. 1337-1612. DOI: https://doi.org/10.1016/j.joule.2020.05.005

Calculation of the hourly and daily radiation incident on three step tracking planes. Bin Ai and other. Elsevier, 2003. №44. C. 1999-2011. DOI: https://doi.org/10.1016/S0196-8904(02)00229-7

N. H. Helwa, A. B. G. Bahgat, A. M. R. El Shafee, E. T. El Shenawy. Computation of the Solar Energy Captured by Different Solar Tracking Systems. Energy Sources, 2000. №22. С. 35-44. DOI: https://doi.org/10.1080/00908310050014199

Сергей Маринец. Трекер для фотоэлектрических установок. 2016. URL: https://solarsoul.net/treker-dlya-fotoelektricheskix-ustanovok (дата звернення: 02.02.22).

Joseph O’Connor. Off Grid solar: a handbook for photovolttaics with lead-acid or lithium-lon batteries. Kindle edithion. South Carolina : CreateSpace Independent Publishing Platform, 2019. 198 с..

Susan Neill. Solar farms: the earthscan expert guide to design and construction of utility-scale photovoltaic systems. London : Routledge. 2017. 250 с.

Arnold Ringstad. The science of solar energy (Science of renewable energy). San Diego : Referencepoint Press, 2018. 80 с.

Нетрадиционные и возобновляемые источники энергии / за ред.: В. Денсова. Ростов н/Д : Феникс, 2015. 382 с.

Bill Brooks. PV and the NEC, 1st edition, kindle edition. London : Routledge. 2018. 218p.

Bethel Afework, Ethan Boechler, Jordan Hanania, Anna Pletnyova, Kailyn Stenhouse, Brodie Yyelland, Jason Donev. Energy education. 2021. URL: https://energyeducation.ca/encyclopedia/Insolation (дата звернення: 02.02.22).

Insolation. 2016. URL: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/insolation (дата звернення: 02.02.22).

Динамічні системи SOLAR. URL: https://ussolar.systems/ru/dinamichni-sistemi (дата звернення: 02.02.22).

Н.Ткаченко, В.Кулінченко Економіка підприємства енергетичного комплексу : підручник. Київ : Алерта, 2016. 336 с.

АВС аналіз. Що це таке? URL: http://erp-project.com.ua/index.php/uk/korisni-materiali/statti/analitika/198-avs-analiz-chto-eto-takoe (дата звернення: 02.02.22).

https://doi.org/10.35546/kntu2078-4481.2022.1.

Published

2022-04-08