PECULIARITY OF THE AUTOMATIC SYSTEM’S INFLUENCE ON THE SHIP’S PROPELLER SHAFT RESONANCE MODES

Authors

  • Volodymyr Oleksandrovych Leshchev National University “Odessa Maritime Akademy”
  • Igor Zakharovych Maslov National University “Odessa Maritime Akademy”
  • Andrii Ihorovych Naydoynov National University “Odessa Maritime Akademy”

Keywords:

ship propulsion, visual modelling, torsional vibrations, propeller shaft line, resonant frequency range

Abstract

The scientific relevance of the study lies in the fact that it proposes the first ever visual model that simulates the process of joint operation of the marine diesel engine automation system and the ship's propulsion system. The purpose of the study is to analyse the features of the propeller shaft operation in resonant modes of torsional vibrations. The research method of the study is modelling on the VisSim software product. The paper presents a developed model of the ARCH-DMCH complex, which allows for a comprehensive study of the dynamic modes of the ship's propulsion system. It is presented that in the steady state with the simultaneous action of vibration disturbances from the diesel engine and from the propeller, the amplitude of torsional vibrations of the propeller shaft outside the resonance range can durably and significantly exceed the value of the nominal torque of the diesel engine. The possibility of the occurrence of a resonance of torsional vibrations in the propeller shaft of a ship at a frequency of its rotation outside the forbidden operating range is investigated. It was established that when external perturbations are imposed on one another and vibrations occur, their low frequency can resonate with the natural frequency of the propeller shaft vibration. It was found that for low- and medium-speed diesel engines, the resonance band from the blade frequencies of external excitation must be combined with the critical frequency band of the DMC into one band of forbidden frequencies, since they are located quite close to each other, which is undesirable in the long-term operation of a diesel engine at low rotational speeds of the propeller blade.

Author Biographies

Volodymyr Oleksandrovych Leshchev, National University “Odessa Maritime Akademy”

кандидат технічних наук, доцент кафедри суднових енергетичних установок і систем

Igor Zakharovych Maslov , National University “Odessa Maritime Akademy”

кандидат технічних наук, доцент, завідуючий кафедри  суднових енергетичних установок і систем

Andrii Ihorovych Naydoynov , National University “Odessa Maritime Akademy”

спеціаліст, старший викладач  кафедри суднових енергетичних установок і систем

References

Мартьянов, В.В. (2015). Расчет крутильных колебаний судового валопровода прогулочного пассажирского теплохода «Максимус». Материалы 6-й межвузовской научно-практической конференции, «Современные тенденции и перспективы развития водного транспорта России», 14 мая 2015 г. Санкт-Петербург: Изд-во ГУМРФ им. адм. С.О. Макарова, с. 146-150.

Иванченко, А.А., Щенников, И.А. (2014). Проблемы эксплуатации судов с дизельными установками нового поколения и задачи по их совершенствованию. Вестник Государственного университета морского и речного флота имени адмирала С.О. Макарова, 5(27), 26-33.

Герасимяк, Р.П., Лещев, В.А. (2008). Анализ и синтез крановых электромеханических систем. Одесса: СМИЛ, 192 c.

Тарасенко, А.И. (2009). Крутильные колебания в малооборотном дизеле при переходных процессах. Авиационно-космическая техника и технология, 8(65), 86-89.

Leschev, V.A. (2018). ACS of marine diesel engine with external feedback of the speed sensor. Modern Engineering and Innovative Technologies, 5(3), 11-17. https://doi.org/10.30890/2567-5273.2018-05-03-009

Narasaiah, N., Ray, K. (2008). Initiation and growth of micro-cracks under cyclic loading. Materials Science and Engineering A, 474 (1-2), 48-59.

Leshchev, V.A. (2019). Modeling of the Impact of Dynamic Modes of a Diesel Engine on the Indicators of Toxic Emissions of Exhaust Gases. Journal of Advanced Research in Dynamical & Control Systems, 11, 1111-1116.

Тверсков, Б.М. (2015). Амплитуды колебаний при резонансе. Вестник КГУ, 3, 45-59.

Dylejko, P., & Kessissoglou, N. (2004). Minimization of the vibration transmission through the propeller‐shafting system in a submarine. Journal of the Acoustical Society of America, 116, 2569-2569.

Huang, Q., Zhang, C., Jin, Y., Yuan, C., & Yan, X. (2015) Vibration analysis of marine propulsion shafting by the coupled finite element method. Journal of Vibroengineering, 17(7), 3392-3403.

Besnier, F., Jian, L., Murawski, L., & Weryk, M. (2008). Evaluation of main engine and propeller excitations of ship hull and superstructure vibration. International Shipbuilding Progress, 55(1-2), 3-27. https://doi.org/10.1155/2014/413592

Chen, F., Chen, Y., & Hua, H. (2020). Coupled vibration characteristics of a submarine propeller-shaft-hull system at low frequency. Journal of Low Frequency Noise, Vibration and Active Control, 39(2), 258-279. https://doi.org/10.1177/1461348419846722

Sievi, A., Martner, O., & Lutzenberger, S. (2012). Noise reduction of trains using the operational transfer path analysis – demonstration of the method and evaluation by case study. Noise and Vibration Mitigation for Rail Transportation Systems, 118, 453-446. https://doi.org/10.1007/978-4-431-53927-8_54

Qi, L., Wu, Y., Zou, M., Duan, Y., & Shen, M. (2018). Acoustic and vibrational characteristics of a propeller–shaft–hull coupled system based on sono-elasticity theory. Journal of Vibration and Control, 24(9), 1707-1715. https://doi.org/10.1177/1077546316668061

Dzionk, S., Przybylski, W., & Ścibiorski, B. (2020). The possibilities of improving the fatigue durability of the ship propeller shaft by burnishing process. Machines, 8(4), 1-17. https://doi.org/10.3390/machines8040063

https://doi.org/10.35546/kntu2078-4481.2021.2.4

Published

2021-07-08